
Formalising Fermat’s Last Theorem for Exponent 3 in Lean

Pietro Monticone

Department of Mathematics, University of Trento

May 14, 2024



Contents

Introduction 2

1 Preliminaries 3
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Third Cyclotomic Extensions 12

3 Fermat’s Last Theorem for Exponent 3 23
3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Acknowledgements 45

References 47

1



Introduction

2



Chapter 1

Preliminaries

1.1 Notation

Symbol Description
¬ Logical negation
⊤ Logical truth / Tautology
⊥ Logical falsehood / Contradiction
∧ Logical conjunction
∨ Logical inclusive disjunction
:= Definition
∀ Universal quantification
∃ Existential quantification
∃! Unique existential quantification
N Set of natural numbers
Z Set of integer numbers
Zn Set of integers modulo n
Q Set of rational numbers

X/Y Field extension
[Y : X] Degree of field extension

× Cartesian product
[n] Equivalence class of n
| Divisibility relation
∤ Negation of divisibility relation

gcd Greatest common divisor
ζn Primitive n-th root of unity
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1.2 Definitions
Definition 1.1 (Monoid).
Let X be a non-empty set.
Let ◦ : X × X → X be an internal composition law on X.

A monoid is a pair M := (X, ◦) satisfying:

(A) ∀x, y, z ∈ X, (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

(N) ∃e ∈ X : ∀x ∈ X, x ◦ e = e ◦ x = x

Definition 1.2 (Commutative Monoid).
Let X be a non-empty set.
Let ◦ : X × X → X be an internal composition law on X.

A commutative monoid is a pair Mc := (X, ◦) satisfying:

(A) ∀x, y, z ∈ X, (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

(N) ∃e ∈ X : ∀x ∈ X, x ◦ e = e ◦ x = x

(C) ∀x, y ∈ X, x ◦ y = y ◦ x

Definition 1.3 (GCD Monoid).
Let X be a non-empty set.
Let ◦ : X × X → X be an internal composition law on X.

A gcd monoid is a pair Mgcd := (X, ◦) satisfying:

(A) ∀x, y, z ∈ X, (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

(N) ∃e ∈ X : ∀x ∈ X, x ◦ e = e ◦ x = x

(C) ∀x, y ∈ X, x ◦ y = y ◦ x

(G) ∀x, y ∈ X, ∃d ∈ X : (d | x) ∧ (d | y) ∧ (∀c ∈ X, c | x ∧ c | y ⇒ c | d)

Definition 1.4 (Group).
Let X be a non-empty set.
Let ◦ : X × X → X be an internal composition law on X.

A group is a pair G := (X, ◦) satisfying:

(A) ∀x, y, z ∈ X, (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

(N) ∃e ∈ X : ∀x ∈ X, x ◦ e = e ◦ x = x
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(I) ∀x ∈ X, ∃x′ ∈ X : x ◦ x′ = x′ ◦ x = e

Definition 1.5 (Commutative Group).
Let X be a non-empty set.
Let ◦ : X × X → X be an internal composition law on X.

A commutative group is a pair Gc := (X, ◦) satisfying:

(A) ∀x, y, z ∈ X, (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

(N) ∃e ∈ X : ∀x ∈ X, x ◦ e = e ◦ x = x

(I) ∀x ∈ X, ∃x′ ∈ X : x ◦ x′ = x′ ◦ x = e

(C) ∀x, y ∈ X, x ◦ y = y ◦ x

Definition 1.6 (Semiring).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A semiring is a triple S := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.7 (Commutative Semiring).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A commutative semiring is a triple Sc := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x
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(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(C2) ∀x, y ∈ X, x · y = y · x

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.8 (Ring).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A ring is a triple R := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.9 (Commutative Ring).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A commutative ring is a triple Rc := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(C2) ∀x, y ∈ X, x · y = y · x
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(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.10 (Domain).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A domain is a triple D := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

(Z2) ∀x, y ∈ X, x · y = 0 ⇒ x = 0 ∨ y = 0

Definition 1.11 (Commutative Domain).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A commutative or integral domain is a triple Dc := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(C2) ∀x, y ∈ X, x · y = y · x

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x
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(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

(Z2) ∀x, y ∈ X, x · y = 0 ⇒ x = 0 ∨ y = 0

Definition 1.12 (Field).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A field is a triple F := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

(I2) ∀x ∈ X, ∃x−1 ∈ X : x · x−1 = x−1 · x = 1

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.13 (Commutative Field).
Let X be a non-empty set.
Let + : X × X → X be an additive internal composition law on X.
Let · : X × X → X be a multiplicative internal composition law on X.

A commutative field is a triple Fc := (X, +, ·) satisfying:

(A1) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C1) ∀x, y ∈ X, x + y = y + x

(N1) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I1) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(A2) ∀x, y, z ∈ X, (x · y) · z = x · (y · z) = x · y · z

(C2) ∀x, y ∈ X, x · y = y · x

(N2) ∃1 ∈ X : ∀x ∈ X, x · 1 = 1 · x = x

8



(I2) ∀x ∈ X, ∃x−1 ∈ X : x · x−1 = x−1 · x = 1

(D1) ∀x, y, z ∈ X, x · (y + z) = x · y + x · z

(D2) ∀x, y, z ∈ X, (x + y) · z = x · z + y · z

Definition 1.14 (Vector Space).
Let X be a non-empty set.
Let (K, +, ·) be a field.
Let + : X × X → X be an additive internal composition law on X.
Let · : K × X → X be a multiplicative external composition law on X.

A K-vector space or K-linear space is a triple V := (X, +, ·)K satisfying:

(A) ∀x, y, z ∈ X, (x + y) + z = x + (y + z) = x + y + z

(C) ∀x, y ∈ X, x + y = y + x

(N) ∃0 ∈ X : ∀x ∈ X, x + 0 = 0 + x = x

(I) ∀x ∈ X, ∃(−x) ∈ X : x + (−x) = (−x) + x = 0

(P) ∀x ∈ X, ∀k, ℓ ∈ K, k ·X (ℓ ·X x) = (k ·K ℓ) ·X x

(U) ∃1 ∈ K : ∀x ∈ X, 1 · x = x

(D1) ∀x, y ∈ X, ∀k ∈ K, k · (x +X y) = k · x +X k · y

(D2) ∀k, ℓ ∈ K, ∀x ∈ X, (k +K ℓ) · x = k · x +X ℓ · x

From now on, we shall employ the notation X in place of the more explicit (X, +, ·)
to denote a field, commutative ring, domain, or similar algebraic structures when the
context unambiguously implies the operations involved.

Definition 1.15 (Field Extension).
Let (X, +, ·) be a field.
Let (Y, +, ·) be a field such that Y ⊆ X.

A field extension is the pair X/Y such that the operations of Y are those of X restricted
to Y .

Definition 1.16 (Degree of Field Extension).
Let (X, +, ·) be a field.
Let (Y, +, ·) be a field such that Y ⊆ X.
Let X/Y be a field extension.

The degree of X/Y , denoted as [Y : X], is the dimension of X as a vector space over Y .
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Definition 1.17 (Algebraic Field Extension).
Let (X, +, ·) be a field.
Let (Y, +, ·) be a field such that Y ⊆ X.
An algebraic field extension is the field extension X/Y such that its degree [Y : X] is
finite.

Definition 1.18 (Extension Field).
Let (X, +, ·) be a field.
Let (Y, +, ·) be a field such that Y ⊆ X.
Let X/Y be a field extension.

The field X is said to be an extension field of Y .

Definition 1.19 (Subfield).
Let (X, +, ·) be a field.
Let (Y, +, ·) be a field such that Y ⊆ X.
Let X/Y be a field extension.

The field Y is said to be a subfield of X.

Definition 1.20 (Number Field).
Let (X, +, ·) be a field.
Let (Q, +, ·) be the field of rational numbers such that Q ⊆ X.
Let X/Q be an algebraic field extension.

The extension field X is said to be a number field or an algebraic number field.

1.3 Results
Theorem 1.21.
Let p ∈ N be prime.

If ζp is a primitive p-th root of unity, then ζp − 1 is prime.

Proof. This has already been formalised and included in Mathlib.

Lemma 1.22.
Let R be a commutative semiring, domain and normalised gcd monoid.
Let a, b, c ∈ R.
Let n ∈ N.
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Then, to prove Fermat’s Last Theorem for exponent n in R, one can assume, without
loss of generality, that gcd(a, b, c) = 1.

Proof. This has already been formalised and included in Mathlib.

Lemma 1.23.
Let Z9 be the ring of integers modulo 9.
Let Z3 be the ring of integers modulo 3.
Let n ∈ Z9.
Let ϕ : Z9 → Z3 be the canonical ring homomorphism.
Let ϕ(n) ̸= 0.

Then n3 = 1 ∨ n3 = 8.

Proof. This has already been formalised and included in Mathlib.
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Chapter 2

Third Cyclotomic Extensions

Theorem 2.1.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let u ∈ O×

K be a unit.

Then u ∈
{
1, −1, η, −η, η2, −η2}

.

Proof. Let F be the fundamental system of K.
By properties of cyclotomic fields, we know that rank (K) = 0 (see this lemma, this
lemma and this lemma which have already been formalised and included in Mathlib).
By the Dirichlet Unit Theorem (see Mathlib), we know that

∃x ∈ K with finite order, such that u = x
∏
v∈F

v,

but since rank (K) = 0, then F = ∅, which implies that u = x.
Since u = x has finite order, by properties of primitive roots (see this lemma that has
already been formalised and included in Mathlib), we can deduce that

∃r < 3 such that u = ηr ∨ u = −ηr.

Therefore, we can conclude

u ∈ {±ηr | r ∈ {0, 1, 2}} =
{

1, −1, η, −η, η2, −η2
}

.
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Theorem 2.2.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let m ∈ Z.

Then 3 ∤ η − m.

Proof. By properties of cyclotomic fields, we know that {1, η} is an integral power basis
of OK (see this lemma, this lemma and this lemma which have already been formalised
and included in Mathlib).
For every ξ ∈ OK , we define π1(ξ) and π2(ξ) to be the first and second coordinates of ξ
with respect to the basis {1, η} ∈ OK , i.e.

ξ = π1(ξ) + π2(ξ)η.

By contradiction we assume that

∃m ∈ Z such that 3 | η − m,

which implies that
∃x ∈ OK such that η − m = 3x.

By linearity of π2,
π2(η) = π2(3x + m) = 3π2(x) + π2(m).

Since π2(η) = 1 and π2(m) = 0, then we have that 3 | 1, which is a contradiction.

Lemma 2.3.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then λ2 = −3η.

Proof. By definition we have that λ = η − 1, which implies that

λ2 = (η − 1)2 = η2 − 2η + 1.

Since η corresponds to a root of the equation x2 + x + 1 = 0, then η2 = −1 − η.
Substituting back, we can conclude that

λ2 = (−1 − η) − 2η + 1 = −3η.
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Theorem 2.4.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let u ∈ O×

K be a unit.

If ∃m ∈ Z such that λ2 | u − m, then u = 1 ∨ u = −1.
This is a special case of the Kummer’s Lemma.

Proof. By Lemma 2.3, we have that −3η = λ2 | u − m, which implies that 3 | u − m.
By Theorem 2.1, we know that u ∈

{
1, −1, η, −η, η2, −η2}

.
We proceed by analysing each case:

• Case u = 1 ∨ u = −1. This finishes the proof.

• Case u = η.
Since 3 | u − m, we have that 3 | η − m, which contradicts Theorem 2.2 forcing us
to conclude that u ̸= η.

• Case u = −η.
Since 3 | u−m, we have that 3 | −η−m, then by properties of divisibility 3 | η+m,
which contradicts Theorem 2.2 forcing us to conclude that u ̸= −η.

• Case u = η2.
Since 3 | u − m, we have that 3 | η2 − m, which contradicts Theorem 2.2 since η2

is a third root of unity (see Mathlib), forcing us to conclude that u ̸= η2.

• Case u = −η2.
Since 3 | u − m, we have that 3 | −η2 − m, then by properties of divisibility
3 | η2 + m, which contradicts Theorem 2.2 since η2 is a third root of unity (see
Mathlib), forcing us to conclude that u ̸= −η2.

Therefore, u = 1 ∨ u = −1.

Lemma 2.5.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
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Let λ ∈ OK be such that λ = η − 1.

Then the norm of λ is 3.

Proof. Since the third cyclotomic polynomial over Q is irreducible, then the norm of λ
is 3 by properties of primitive roots (see this lemma that has already been formalised
and included in Mathlib).

Lemma 2.6.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then the norm of λ is a prime number.

Proof. It directly follows from Lemma 2.5 since 3 is a prime number.

Lemma 2.7.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then λ | 3.

Proof. By properties of norms and divisibility, if the norm of an element in the ring
of integers divides a number, then the element itself must divide that number. In this
case, by Lemma 2.5 we know that the norm of λ is 3, that divides 3, which implies that
λ | 3.

Lemma 2.8.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
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Then λ is prime.

Proof. Since 3 is prime and ζ3 is a primitive third root of unity, then λ is prime by
Theorem 1.21.

Lemma 2.9.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then λ ̸= 0.

Proof. It directly follows from Lemma 2.8 since zero is not prime.

Lemma 2.10.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then λ is not a unit.

Proof. It directly follows from Lemma 2.8 since prime numbers are not units.

Lemma 2.11.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let I be the ideal generated by λ.

Then OK/I has cardinality 3.

Proof. It directly follows from Lemma 2.5 by the fundamental properties of ideals.
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Lemma 2.12.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let I be the ideal generated by λ.
Let 2 ∈ OK/I.

Then 2 ̸= 0.

Proof. By contradiction we assume that 2 ∈ I, then, by definition, λ would divide
2 ∈ OK . Recall from Lemma 2.5 that the norm of λ is 3. If λ divided 2, then by
properties of divisibility in number fields, the norm of λ would also divide 2. However
3 ∤ 2 showing a contradiction. Therefore, λ ∤ 2, then 2 /∈ I, which implies that 2 ∈ OK/I
is non-zero.

Lemma 2.13.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.

Then λ ∤ 2.

Proof. By contradiction we assume that λ | 2, that implies that 2 ∈ I from which it
follows that 2 = 0 contradicting Lemma 2.12 forcing us to conclude that λ ∤ 2.

Lemma 2.14.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let I be the ideal generated by λ.

Then OK/I = {0, 1, −1}.

Proof. By Lemma 2.11, the cardinality of OK/I is 3, so it suffices to prove that 1, −1
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and 0 are distinct.
We proceed by contradiction analysing each case:

• Case 1 = −1. By basic algebraic properties, 1 = −1 implies that 2 = 0, which
contradicts Lemma 2.12 forcing us to conclude that 1 ̸= −1.

• Case 1 = 0. Trivial contradiction.

• Case −1 = 0. It implies that 1 = 0, which is a contradiction.

Lemma 2.15.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let x ∈ OK .

Then (λ | x) ∨ (λ | x − 1) ∨ (λ | x + 1).

Proof. Let I be the ideal generated by λ. Let π : OK → OK/I.
By Lemma 2.14, we have that π(x) ∈ OK/I = {0, 1, −1}.
We proceed by analysing each case:

• Case π(x) = 0. By properties of ideals, λ | x.

• Case π(x) = 1. Then 0 = π(x) − 1 = π(x − 1), which, by properties of ideals,
implies that λ | x − 1.

• Case π(x) = −1. Then 0 = π(x) + 1 = π(x + 1), which, by properties of ideals,
implies that λ | x + 1.

Lemma 2.16.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.

Then η3 = 1.
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Proof. Since ζ3 ∈ K is a primitive third root of unity, then ζ3
3 = 1. Given that η ∈ OK is

the element corresponding to ζ3 ∈ K, then η3 = 1 by the extension of the field properties
into the ring of integers.

Lemma 2.17.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.

Then η is a unit.

Proof. It directly follows from Lemma 2.16.

Lemma 2.18.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.

Then η2 + η + 1 = 0.

Proof. Since η corresponds to a root of the equation x2+x+1 = 0, then η2+η+1 = 0.

Lemma 2.19.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let x ∈ OK .

Then x3 − 1 = (x − 1)(x − η)(x − η2).

Proof. Applying Lemma 2.16 and Lemma 2.18, we have that

(x − 1)(x − η)(x − η2) = x3 − x2(η2 + η + 1) + x(η2 + η + η3) − η3

= x3 − x2(η2 + η + 1) + x(η2 + η + 1) − 1
= x3 − 1.
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Lemma 2.20.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let x ∈ OK .

Then λ | x(x − 1)(x − (η + 1)).

Proof. By Lemma 2.15, we have that

(λ | x) ∨ (λ | x − 1) ∨ (λ | x + 1).

We proceed by analysing each case:

• Case λ | x.
By properties of divisibility, we have that λ | x(x − 1)(x − (η + 1)).

• Case λ | x − 1.
By properties of divisibility, we have that λ | x(x − 1)(x − (η + 1)).

• Case λ | x + 1.
By properties of divisibility, it suffices to prove that

λ | x − (η + 1) = x + 1 − (η − 1 + 3).

By definition of λ, we have that

x + 1 − (η − 1 + 3) = x + 1 − (λ + 3).

By properties of divisibility and Lemma 2.7, we can deduce that λ | λ + 3.
Therefore, by properties of divisibility, we can conclude that

λ | x(x − 1)(x − (η + 1)).

Lemma 2.21.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
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Let x ∈ OK .

If λ | x − 1, then λ4 | x3 − 1.

Proof. Let λ | x − 1, which is equivalent to say that

∃y ∈ OK such that x − 1 = λy.

By ring properties and Lemma 2.19, we have that

x3 − 1 = λ3(y(y − 1)(y − (η + 1))).

By properties of divisibility and Lemma 2.20, we can conclude that

λ4 | x3 − 1.

Lemma 2.22.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let x ∈ OK .

If λ | x + 1, then λ4 | x3 + 1.

Proof. By properties of divisibility, if λ | x + 1 then

λ | −(x + 1) = (−x) − 1.

By Lemma 2.20, we can deduce that

λ4 | (−x)3 − 1.

By divisibility and ring properties we can conclude that

λ4 | x3 + 1.

Lemma 2.23.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
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Let O×
K be the group of units of OK .

Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let x ∈ OK .

If λ ∤ x, then (λ4 | x3 − 1) ∨ (λ4 | x3 + 1).

Proof. By Lemma 2.15, we have that

(λ | x) ∨ (λ | x − 1) ∨ (λ | x + 1).

We proceed by analysing each case:

• Case λ | x. From trivially contradictory hypotheses we can conclude that

(λ4 | x3 − 1) ∨ (λ4 | x3 + 1).

• Case λ | x − 1. By Lemma 2.21, we have that λ4 | x3 − 1, which implies that

(λ4 | x3 − 1) ∨ (λ4 | x3 + 1).

• Case λ | x + 1. By Lemma 2.22, we have that λ4 | x3 + 1, which implies that

(λ4 | x3 − 1) ∨ (λ4 | x3 + 1).
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Chapter 3

Fermat’s Last Theorem for
Exponent 3

3.1 Case 1
Lemma 3.1.
Let n ∈ N.
Let [n] ∈ Z9.
Let 3 ∤ n.

Then [n]3 = 1 ∨ [n]3 = 8.

Proof. By Lemma 1.23, we can conclude that [n]3 = 1 ∨ [n]3 = 8.

Theorem 3.2 (Fermat’s Last Theorem for 3: Case 1).
Let a, b, c ∈ N.
Let 3 ∤ abc.

Then a3 + b3 ̸= c3.

Proof. By hypothesis we know that 3 ∤ abc, which implies that 3 ∤ a, 3 ∤ b and 3 ∤ c.
By repeatedly applying Lemma 3.1 for each case, we can conclude that

a3 + b3 ̸= c3.
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3.2 Case 2
Lemma 3.3.
Let a, b, c ∈ N.
Let 3 | a and 3 | b.
Let a3 + b3 = c3.

Then 3 | gcd(a, b, c).

Proof. By hypothesis we have that 3 | a3 + b3 = c3, which implies that 3 | c, from which
we can conclude that 3 | gcd(a, b, c).

Lemma 3.4.
Let a, b, c ∈ N.
Let 3 | a and 3 | c.
Let a3 + b3 = c3.

Then 3 | gcd(a, b, c).

Proof. By hypothesis we have that 3 | c3 − a3 = b3, which implies that 3 | b, from which
we can conclude that 3 | gcd(a, b, c).

Lemma 3.5.
Let a, b, c ∈ N.
Let 3 | b and 3 | c.
Let a3 + b3 = c3.

Then 3 | gcd(a, b, c).

Proof. By hypothesis we have that 3 | c3 − b3 = a3, which implies that 3 | a, from which
we can conclude that 3 | gcd(a, b, c).

Theorem 3.6.
To prove Theorem 3.66, it suffices to prove that

∀a, b, c ∈ Z, if c ̸= 0 and 3 ∤ a and 3 ∤ b and 3 | c and gcd(a, b) = 1, then a3 + b3 ̸= c3.

Equivalently,

∀a, b, c ∈ Z, if c ̸= 0 and 3 ∤ a and 3 ∤ b and 3 | c and gcd(a, b) = 1, then a3 + b3 ̸= c3

implies Theorem 3.66.
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Proof. By contradiction we assume that

∃a, b, c ∈ N∖ {0} such that a3 + b3 = c3.

By Lemma 1.22 we can assume that gcd(a, b, c) = 1.
By Theorem 3.2 we can assume that 3 | abc, from which it follows that

(3 | a) ∨ (3 | b) ∨ (3 | c).

We proceed by analysing each case:

• Case 3 | a.
Let a′ = −c, b′ = b, c′ = −a, then 3 | c′ and

(a′ ̸= 0) ∧ (b′ ̸= 0) ∧ (c′ ̸= 0).

Then 3 ∤ a′ since otherwise by Lemma 3.4 we would have that 3 | gcd(a, b, c) = 1
which is absurd.
Analogously, by Lemma 3.3 we have that 3 ∤ b′.
By contradiction we assume that gcd(a′, b′) ̸= 1 which, by basic divisibility prop-
erties, implies that there is a prime p such that p | a′ and p | b′. It follows that
p | b′3 + a′3 = b3 − c3 = −a3, which implies that p | a.
Therefore p | gcd(a, b, c) = 1 which is absurd.
Moreover, we have that a′3 + b′3 = −c3 + b3 = −a3 = c′3 that contradicts our
hypothesis.

• Case 3 | b.
Let a′ = a, b′ = −c, c′ = −b.
The rest of the proof is analogous to the first case using Lemma 3.3 and Lemma 3.5.

• Case 3 | c. Let a′ = a, b′ = b, c′ = c.
The rest of the proof is analogous to the first case using Lemma 3.4 and Lemma 3.5.

Therefore, we can conclude that a3 + b3 ̸= c3.

Definition 3.7 (Solution’).
Let a, b, c ∈ OK such that c ̸= 0 and gcd(a, b) = 1.
Let λ ∤ a, λ ∤ b and λ | c.

A solution’ is a tuple S′ = (a, b, c, u) satisfying the equation a3 + b3 = uc3.

Definition 3.8 (Solution).
Let a, b, c ∈ OK such that c ̸= 0 and gcd(a, b) = 1.
Let λ ∤ a, λ ∤ b, λ | c and λ2 | a + b.

A solution is a tuple S = (a, b, c, u) satisfying the equation a3 + b3 = uc3.
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Definition 3.9 (Multiplicity of Solution’).
Let S′ = (a, b, c, u) be a solution′.

The multiplicity of S′ is the largest n ∈ N such that λn | c.

Definition 3.10 (Multiplicity of Solution).
Let S = (a, b, c, u) be a solution.

The multiplicity of S is the largest n ∈ N such that λn | c.

Definition 3.11 (Minimal Solution).
Let S = (a, b, c, u) be a solution.

We say that S is minimal if for all solutions S1 = (a1, b1, c1, u1), the multiplicity of
S is less than or equal to the multiplicity of S1.

Lemma 3.12.
Let S′ = (a, b, c, u) be a solution′.

Then the multiplicity of S′ is finite.

Proof. It directly follows from Lemma 2.10.

Lemma 3.13.
Let S be a solution with multiplicity n.

Then there is a minimal solution S1.

Proof. Straightforward since n ∈ N and N is well-ordered.

Lemma 3.14.
Let S′ = (a, b, c, u) be a solution′.

Then λ4 | a3 − 1 ∧ λ4 | b3 + 1 or λ4 | a3 + 1 ∧ λ4 | b3 − 1.

Proof. Since λ ∤ a, then λ4 | a3 − 1 ∨ λ4 | a3 + 1 by Lemma 2.23. Since λ ∤ b, then
λ4 | b3 − 1 ∨ λ4 | b3 + 1 by Lemma 2.23. We proceed by analysing each case:

• Case λ4 | a3 −1∧λ4 | b3 −1. Since λ | c we have that λ | c3 − (a3 −1)− (b3 −1) = 2,
which is absurd by Lemma 2.13.
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• Case λ4 | a3 +1∧λ4 | b3 +1. Since λ | c we have that λ | (a3 −1)+(b3 −1)−c3 = 2,
which is absurd by Lemma 2.13.

• Case λ4 | a3 − 1 ∧ λ4 | b3 + 1. Trivial.

• Case λ4 | a3 + 1 ∧ λ4 | b3 − 1. Trivial.

Lemma 3.15.
Let S′ = (a, b, c, u) be a solution′.

Then λ4 | c3.

Proof. Apply Lemma 3.14 and then compute each case.

Lemma 3.16.
Let S′ = (a, b, c, u) be a solution′.

Then λ2 | c.

Proof. Apply Lemma 3.15.

Lemma 3.17.
Let S′ = (a, b, c, u) be a solution′ with multiplicity n.

Then 2 ≤ n.

Proof. It directly follows from Lemma 3.16.

Lemma 3.18.
Let S = (a, b, c, u) be a solution with multiplicity n.

Then 2 ≤ n.

Proof. It directly follows from Lemma 3.17.

Lemma 3.19.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
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Let S′ = (a, b, c, u) be a solution′.

Then a3 + b3 = (a + b)(a + ηb)(a + η2b).

Proof. Straightforward calculation using Lemma 2.16 and Lemma 2.18.

Lemma 3.20.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S′ = (a, b, c, u) be a solution′.

Then (λ2 | a + b) ∨ (λ2 | a + ηb) ∨ (λ2 | a + η2b).

Proof. By contradiction we assume that

(λ2 ∤ a + b) ∧ (λ2 ∤ a + ηb) ∧ (λ2 ∤ a + η2b).

Then, by definition, the multiplicity of λ in a + b, in a + ηb and in a + η2b is less than 2.
By properties of divisibility, Lemma 3.16 and Lemma 3.19, we have that

λ6 | uc3 = a3 + b3 = (a + b)(a + ηb)(a + η2b).

Then, the multiplicity of λ in (a + b)(a + ηb)(a + η2b) is greater than or equal to 6.
By Lemma 2.8 λ is prime, so we have that the multiplicity of λ in (a+b)(a+ηb)(a+η2b)
is the sum of the multiplicities of λ in a + b, in a + ηb and in a + η2b, which is less than
6. This is a contradiction that forces us to conclude that

(λ2 | a + b) ∨ (λ2 | a + ηb) ∨ (λ2 | a + η2b).

Lemma 3.21.
Let S′ = (a, b, c, u) be a solution′.

Then ∃a1, b1 ∈ Ok such that S1 = (a1, b1, c, u) is a solution.

Proof. By Lemma 3.20, we have that

(λ2 | a + b) ∨ (λ2 | a + ηb) ∨ (λ2 | a + η2b).

We proceed by analysing each case:
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• Case λ2 | a + b. Trivial using a1 = a and b1 = b.

• Case λ2 | a + ηb. Let a1 = a and b1 = ηb.
By Lemma 2.16, we have that a3 + (ηb)3 = a3 + b3 = uc3.
By properties of coprimes and Lemma 2.17, we have that gcd(a, b) = 1 implies
that gcd(a, ηb) = 1.
Since a1 = a, we already know that λ ∤ a = a1.
By contradiction we assume that λ | b1 = ηb, which, by Lemma 2.16, it implies
that λ | η2ηb = b that contradicts our assumption, forcing us to conclude that
λ ∤ b1.

• Case λ2 | a + η2b. Let a1 = a and b1 = η2b.
By Lemma 2.16, we have that a3 + (η2b)3 = a3 + b3 = uc3.
By properties of coprimes and Lemma 2.17, we have that gcd(a, b) = 1 implies
that gcd(a, η2b) = 1.
Since a1 = a, we already know that λ ∤ a = a1.
By contradiction we assume that λ | b1 = η2b, which, by Lemma 2.16, it implies
that λ | ηη2b = b that contradicts our assumption, forcing us to conclude that
λ ∤ b1.

Therefore, we can conclude that ∃a1, b1 ∈ Ok such that S1 = (a1, b1, c, u) is a solution.

Lemma 3.22.
Let S′ be a solution′ with multiplicity n.

Then there is a solution S with multiplicity n.

Proof. Let S′ = (a′, b′, c′, u′). Let a, b be the units given by Lemma 3.21. Then S =
(a, b, c′, u′) is a solution′ with multiplicity n.

Lemma 3.23.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let S = (a, b, c, u) be a solution.

Then a + ηb = (a + b) + λb.

Proof. Trivial calculation.
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Lemma 3.24.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.

Then λ | a + ηb.

Proof. Trivial since λ | a + b.

Lemma 3.25.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.

Then λ | a + η2b.

Proof. Since λ | a + b, then λ | (a + b) + λ2b + 2λb = a + η2b.

Lemma 3.26.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.

Then λ2 ∤ a + ηb.

Proof. By contradiction we assume that λ2 | a + ηb, which implies that λ2 | a + b + λb
by Lemma 3.23. Since λ2 | a + b, then λ2 | λb, which implies that λ | b, that contradicts
Definition 3.8 forcing us to conclude that λ2 ∤ a + ηb.
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Lemma 3.27.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.

Then λ2 ∤ a + η2b.

Proof. By contradiction using Lemma 2.18, we assume λ2 | a + η2b = a + b − b + η2b.
Since λ2 | a + b, then λ2 | b(η2 − 1) = λb(η + 1). Since λ ∤ b, then λ | η + 1 = λ + 2, then
λ | 2 which is absurd.

Lemma 3.28.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let S = (a, b, c, u) be a solution.

Then (η + 1)(−η) = 1.

Proof. Trivial calculation using Lemma 2.18.

Lemma 3.29.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.
Let p ∈ OK be a prime such that p | a + b and p | a + ηb.

Then p is associated with λ.

Proof. We proceed by analysis each case:

• Case p | λ. It directly follows from Lemma 2.8.
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• Case p ∤ λ.
By hypothesis, we have that p | a + b and p | a + ηb. Then p | (a + ηb) − (a + b) =
b(η − 1) = bλ, which implies that p | b and we proceed analogously to show that
p | a.
Therefore p | gcd(a, b) = 1 which is absurd.

Therefore, we can conclude that p is associated with λ.

Lemma 3.30.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.
Let p ∈ OK be a prime such that p | a + b and p | a + η2b.

Then p is associated with λ.

Proof. We proceed by analysis each case:

• Case p | λ. It directly follows from Lemma 2.8.

• Case p ∤ λ.
By hypothesis, we have that p | a + b and p | a + η2b. By Lemma 2.16 and
Lemma 2.17, we have that

p | η((a + η2b) − (a + b)) = −(η3 − η)b = λb,

which implies that p | b and we proceed analogously to show that p | a.
Therefore p | gcd(a, b) = 1 which is absurd.

Therefore, we can conclude that p is associated with λ.

Lemma 3.31.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.
Let p ∈ OK be a prime such that p | a + ηb and p | a + η2b.

Then p is associated with λ.
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Proof. We proceed by analysis each case:

• Case p | λ. It directly follows from Lemma 2.8.

• Case p ∤ λ.
By hypothesis, we have that p | a + ηb and p | a + η2b. Then p | (a + η2b) − (a +
ηb) = ηb(η − 1) = ηbλ, which, by Lemma 2.17, implies that p | b and we proceed
analogously to show that p | a.
Therefore p | gcd(a, b) = 1 which is absurd.

Therefore, we can conclude that p is associated with λ.

Definition 3.32 (x, y, z, w).
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution.

We define x ∈ OK such that a + b = λ3n−2x.
We define y ∈ OK such that a + ηb = λy.
We define z ∈ OK such that a + η2b = λz.
We define w ∈ OK such that c = λnw.

Lemma 3.33.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ y.

Proof. By contradiction we assume that λ | y, which implies that λ2 | λy = a + ηb, that
contradicts Lemma 3.26 forcing us to conclude that λ ∤ y.

Lemma 3.34.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
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Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ z.

Proof. By contradiction we assume that λ | z, which implies that λ2 | λz = a + η2b, that
contradicts Lemma 3.27 forcing us to conclude λ ∤ z.

Lemma 3.35.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution with multiplicity n.

Then λ3n−2 | a + b.

Proof. By Definition 3.10 we have that λn | c. Since u is a unit, then by Lemma 3.19
we have that

λ3n | uc3 = a3 + b3 = (a + b)(a + ηb)(a + η2b) = (a + b)(λy)(λz).

Then applying Lemma 3.33 and Lemma 3.34, we can conclude that λ3n−2 | a + b.

Lemma 3.36.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ w.

Proof. By contradiction we assume that λ | w, which implies λn+1 | λnw = c that
contradicts Definition 3.10 forcing us to conclude that λ ∤ w.
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Lemma 3.37.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ x.

Proof. By contradiction, if λ | x, then λ3n−1 | λ3n−2x = a + b. Using Lemma 3.24 and
Lemma 3.25, we have that λ3n+1 | (a+b)(a+ηb)(a+η2cdotb) = a3 +b3 = uc3 = uλ3nw3.
Then λ | w3 which implies that λ | w, that contradicts Lemma 3.36 forcing us to conclude
λ ∤ x.

Lemma 3.38.
Let S be a solution with multiplicity n.

Then gcd(x, y) = 1.

Proof. Since y ̸= 0 by Lemma 3.33, by the properties of PIDs it suffices to prove that
∀p ∈ OK if p is prime and p | x, then p ∤ y. Let p ∈ OK be prime and suppose
by contradiction that p | x and p | y which implies that p | λ3n−2x = a + b and
p | λy = a + ηb. Then by Lemma 3.29 we have that p is associated with λ, which implies
that λ | x that contradicts Lemma 3.37 forcing us to conclude that p ∤ y, which, as stated
above, implies that gcd(x, y) = 1.

Lemma 3.39.
Let S be a solution.

Then gcd(x, z) = 1.

Proof. Since z ̸= 0 by Lemma 3.34, by the properties of PIDs it suffices to prove that
∀p ∈ OK if p is prime and p | x, then p ∤ z. Let p ∈ OK be prime and suppose
by contradiction that p | x and p | z which implies that p | λ3n−2x = a + b and
p | λz = a + η2b. Then by Lemma 3.30 we have that p is associated with λ, which
implies that λ | x that contradicts Lemma 3.37 forcing us to conclude that p ∤ z, which,
as stated above, implies that gcd(x, z) = 1.

Lemma 3.40.
Let S be a solution.
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Then gcd(y, z) = 1.

Proof. Since z ̸= 0 by Lemma 3.34, by the properties of PIDs it suffices to prove that
∀p ∈ OK if p is prime and p | y, then p ∤ z. Let p ∈ OK be prime and suppose by
contradiction that p | y and p | z which implies that p | λy = a + ηb and p | λz = a + η2b.
Then by Lemma 3.31 we have that p is associated with λ, which implies that λ | y that
contradicts Lemma 3.33 forcing us to conclude that p ∤ z, which, as stated above, implies
that gcd(y, z) = 1.

Lemma 3.41.
Let S be a solution with multiplicity n.

Then 3n − 2 + 1 + 1 = 3n.

Proof. It directly follows from Lemma 3.18 and calculations using ring properties.

Lemma 3.42.
Let S = (a, b, c, u) be a solution.

Then xyz = uw3.

Proof. It directly follows from Definition 3.32, Lemma 3.19, Lemma 2.9, Lemma 3.18
and calculations using ring properties.

Lemma 3.43.
Let S be a solution.

Then ∃u1 ∈ O×
K and ∃X ∈ OK such that x = u1X3.

Proof. By the properties of PIDs, it suffices to prove that there exists a k ∈ OK such that
xk is a cube and gcd(x, k) = 1. Let k = yzu−1, then xk = xyzu−1 = w3 by Lemma 3.42.
Moreover, since gcd(x, y) = 1 by Lemma 3.38 and gcd(x, z) = 1 by Lemma 3.39, then
gcd(x, yz) = 1, which implies that gcd(x, k) = 1.

Lemma 3.44.
Let S be a solution.

Then ∃u2 ∈ O×
K and ∃Y ∈ OK such that y = u2Y 3.

Proof. By the properties of PIDs, it suffices to prove that there exists a k ∈ OK such that
yk is a cube and gcd(y, k) = 1. Let k = xzu−1, then yk = yxzu−1 = w3 by Lemma 3.42.
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Moreover, since gcd(x, y) = 1 by Lemma 3.38 and gcd(y, z) = 1 by Lemma 3.40, then
gcd(y, xz) = 1, which implies that gcd(y, k) = 1.

Lemma 3.45.
Let S be a solution.

Then ∃u3 ∈ O×
K and ∃Z ∈ OK such that z = u3Z3.

Proof. By the properties of PIDs, it suffices to prove that there exists a k ∈ OK such that
zk is a cube and gcd(z, k) = 1. Let k = xyu−1, then zk = zxyu−1 = w3 by Lemma 3.42.
Moreover, since gcd(x, z) = 1 by Lemma 3.39 and gcd(y, z) = 1 by Lemma 3.40, then
gcd(z, xy) = 1, which implies that gcd(z, k) = 1.

Definition 3.46 (u1, u2, u3, u4, u5, X, Y, Z).
Let S be a solution.

We define u1 ∈ O×
K and X ∈ OK such that x = u1X3.

We define u2 ∈ O×
K and Y ∈ OK such that y = u2Y 3.

We define u3 ∈ O×
K and Z ∈ OK such that z = u3Z3.

We define u4 = ηu3u−1
2 .

We define u5 = −η2u1u−1
2 .

Lemma 3.47.
Let S be a solution.

Then X ̸= 0.

Proof. By contradiction we assume that X = 0, then x = 0 by Definition 3.46. Therefore
λ trivially divides x (as any number divides zero) which contradicts Lemma 3.37 forcing
us to conclude that X ̸= 0.

Lemma 3.48.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ X.
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Proof. By contradiction we assume that λ | X, then, by the properties of divisibility,
λ | u1X3, which implies, by Definition 3.46, that λ | x. However, this contradicts
Lemma 3.37 forcing us to conclude that λ ∤ X.

Lemma 3.49.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ Y .

Proof. By contradiction we assume that λ | Y , then, by the properties of divisibility,
λ | u2Y 3, which implies, by Definition 3.46, that λ | y. However, this contradicts
Lemma 3.33 forcing us to conclude that λ ∤ Y .

Lemma 3.50.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ ∤ Z.

Proof. By contradiction we assume that λ | Z, then, by the properties of divisibility,
λ | u3Z3, which implies, by Definition 3.46, that λ | z. However, this contradicts
Lemma 3.34 forcing us to conclude that λ ∤ Z.

Lemma 3.51.
Let S be a solution.

Then gcd(Y, Z) = 1.

Proof. Since Z ̸= 0 by Lemma 3.50, by the properties of PIDs it suffices to prove that
∀p ∈ OK if p is prime and p | Y , then p ∤ Z. Let p ∈ OK be prime and suppose by
contradiction that p | Y and p | Z which implies that p | u2Y 3 = y and p | λu3Z3 = z.
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But this contradicts Lemma 3.40 forcing us to conclude that p ∤ Z, which, as stated
above, implies that gcd(Y, Z) = 1.

Lemma 3.52.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution with multiplicity n.

Then u1X3λ3n−2 + u2ηY 3λ + u3η2Z3λ = 0.

Proof. Applying Definition 3.46, Definition 3.32, Lemma 2.16 and Lemma 2.18, we have

u1X3λ3n−2 + u2ηY 3λ + u3η2Z3λ = xλ3n−2 + ηyλ + η2zλ

= (a + b) + η(a + ηb) + η2(a + η2b)
= a(1 + η + η2) + b(1 + η4 + η2)
= (a + b)(1 + η + η2)
= (a + b)0 = 0

Lemma 3.53.
Let S be a solution.

Then u4 is a unit.

Proof. By Definition 3.46 u4 = ηu3u−1
2 , which is a product of units by Lemma 2.17.

Since the product of units is a unit (multiplicative closure), it follows that u4 must also
be a unit.

Lemma 3.54.
Let S be a solution.

Then u5 is a unit.

Proof. By Definition 3.46 u5 = −η2u1u−1
2 , which is a product of units since η3 = 1 by

Lemma 2.16 and −η(−η2) = η3. Since the product of units is a unit (multiplicative
closure), it follows that u5 must also be a unit.
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Lemma 3.55.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution with multiplicity n.

Then Y 3 + u4Z3 = u5(λ(n − 1)X)3.

Proof. Using Lemma 2.17, Lemma 2.9, it suffices to show that

ληu2(Y 3 + u4Z3) = ληu2u5(λ(n − 1)X)3

which can be proved by simple calculations involving Lemma 2.16, Lemma 3.18 and
Lemma 3.52.

Lemma 3.56.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution.

Then λ2 | λ4.

Proof. Straightforward application of the definition of divisibility.

Lemma 3.57.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution with multiplicity n.

Then λ2 | u5(λn−1X)3.

Proof. Using Lemma 3.18, we have that λ2 | λ2u5λ3n−5X3 = u5(λn−1X)3.
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Lemma 3.58.
Let S be a solution.

Then u4 ∈ {−1, 1} ⊂ OK .

Proof. Let n ∈ N be the multiplicity of the solution S.
By Theorem 2.4, it suffices to prove that

∃m ∈ Z such that λ2 | u4 − m.

By Lemma 2.23 and Lemma 3.49, we have that

(λ4 | Y 3 − 1) ∨ (λ4 | Y 3 + 1).

By Lemma 2.23 and Lemma 3.50, we have that

(λ4 | Z3 − 1) ∨ (λ4 | Z3 + 1).

We proceed by analysing each case:

• Case (λ4 | Y 3 − 1) ∧ (λ4 | Z3 − 1).
Let m = −1 and consider the fact that

u4 − m = Y 3 + u4Z3 − (Y 3 − 1) − u4(Z3 − 1).

By Lemma 3.55, we have that

u4 − m = u5(λn−1X)3 − (Y 3 − 1) − u4(Z3 − 1).

Since, by Lemma 3.57, we know that

λ2 | u5(λn−1X)3

and, by Lemma 3.56 and by assumption, we have that

λ2 | Y 3 − 1 ∧ λ2 | Z3 − 1,

Then, we can conclude that
λ2 | u4 − m.

• Case (λ4 | Y 3 − 1) ∧ (λ4 | Z3 + 1).
Let m = 1 and proceed similarly to the first case.

• Case (λ4 | Y 3 + 1) ∧ (λ4 | Z3 − 1).
Let m = 1 and proceed similarly to the first case.

• Case (λ4 | Y 3 + 1) ∧ (λ4 | Z3 + 1).
Let m = −1 and proceed similarly to the first case.
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Lemma 3.59.
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S be a solution with multiplicity n.

Then Y 3 + (u4Z)3 = u5(λn−1X)3.

Proof. By Lemma 3.58, we have that u4 ∈ {−1, 1}, which implies that u2
4 = 1.

Therefore, by Lemma 3.55, we can conclude that

Y 3 + (u4Z)3 = u5(λn−1X)3.

Definition 3.60 (Final Solution’).
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let S = (a, b, c, u) be a solution with multiplicity n.
Let S′

f = (Y, u4Z, λn−1X, u5).

Then S′
f is a solution′.

Lemma 3.61.
Let S be a solution with multiplicity n.

Then S′
f has multiplicity n − 1.

Proof. Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
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Let (a′, b′, c′, u′) = S′
f be the final solution′, then λn−1 | λn−1X = c′. By contradiction

we assume that λn | c′ which implies that λ | X, that contradicts Lemma 3.48 forcing
us to conclude that λn ∤ c′. Then S′

f has multiplicity n − 1.

Lemma 3.62.
Let S be a solution with multiplicity n.

Then S′
f has multiplicity m < n.

Proof. It directly follows from Lemma 3.61 since m = n − 1 < n.

Theorem 3.63.
Let S be a solution with multiplicity n.

Then there is a solution with multiplicity m < n.

Proof. It directly follows from Lemma 3.61 and Lemma 3.62.

Theorem 3.64 (Generalised Fermat’s Last Theorem for Exponent 3).
Let K = Q(ζ3) be the third cyclotomic field.
Let OK = Z[ζ3] be the ring of integers of K.
Let O×

K be the group of units of OK .
Let ζ3 ∈ K be any primitive third root of unity.
Let η ∈ OK be the element corresponding to ζ3 ∈ K.
Let λ ∈ OK be such that λ = η − 1.
Let a, b, c ∈ OK and u ∈ O×

K such that c ̸= 0 and gcd(a, b) = 1.
Let λ ∤ a, λ ∤ b and λ | c.

Then a3 + b3 ̸= uc3.

Proof. By contradiction we assume that there are a, b, c ∈ OK and u ∈ O×
K such that

c ̸= 0, gcd(a, b) = 1, λ ∤ a, λ ∤ b, λ | c and a3 + b3 = uc3. Then S′ = (a, b, c, u) is a
solution′, which implies that there is a solution S by Lemma 3.22. Then, by Lemma 3.13,
there is a minimal solution S0 with multiplicity n. Hence, there is a solution′ S′

1 with
multiplicity m < n by Theorem 3.63, which implies that there is a solution S1 with
multiplicity m by Lemma 3.22. However, this contradicts the minimality of S0 forcing
us to conclude that a3 + b3 ̸= uc3.

Lemma 3.65.
To prove Theorem 3.66, it suffices to prove Theorem 3.64.
Equivalently, Theorem 3.64 implies Theorem 3.66.
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Proof. Assume that ∀a, b, c ∈ OK , ∀u ∈ O×
K such that c ̸= 0, gcd(a, b) = 1, λ ∤ a, λ ∤ b

and λ | c, it holds that a3 + b3 ̸= uc3. Let a, b, c ∈ Z such that a ̸= 0, b ̸= 0 and c ̸= 0.
By Theorem 3.6, we can assume that gcd(a, b) = 1, 3 ∤ a, 3 ∤ b, 3 | c. By contradiction
we assume that a3 + b3 = c3 and let u = 1.

• By contradiction we assume that λ | a, which implies that the norm of λ divides
a by Lemma 2.6, which implies that 3 | a by Lemma 2.5, that contradicts the
assumption that 3 ∤ a forcing us to conclude that λ ∤ a.

• By contradiction we assume that λ | b, which implies that the norm of λ divides
b by Lemma 2.6, which implies that 3 | b by Lemma 2.5, that contradicts the
assumption that 3 ∤ b forcing us to conclude that λ ∤ b.

• λ | 3 by Lemma 2.7 and 3 | c, then λ | c.

By our first assumption a3 + b3 ̸= uc3 = 1c3 = c3 = a3 + b3 which is absurd.

3.3 Conclusion
Theorem 3.66 (Fermat’s Last Theorem for Exponent 3).
Let a, b, c ∈ N.
Let a ̸= 0, b ̸= 0 and c ̸= 0.

Then a3 + b3 ̸= c3.

Proof. By Lemma 3.65 and Theorem 3.64, we can conclude that

a3 + b3 ̸= c3.
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