Documentation

Init.Data.List.Basic

The syntax [a, b, c] is shorthand for a :: b :: c :: [], or List.cons a (List.cons b (List.cons c List.nil)). It allows conveniently constructing list literals.

For lists of length at least 64, an alternative desugaring strategy is used which uses let bindings as intermediates as in let left := [d, e, f]; a :: b :: c :: left to avoid creating very deep expressions. Note that this changes the order of evaluation, although it should not be observable unless you use side effecting operations like dbg_trace.

Equations
  • One or more equations did not get rendered due to their size.

Auxiliary syntax for implementing [$elem,*] list literal syntax. The syntax %[a,b,c|tail] constructs a value equivalent to a::b::c::tail. It uses binary partitioning to construct a tree of intermediate let bindings as in let left := [d, e, f]; a :: b :: c :: left to avoid creating very deep expressions.

Equations
  • One or more equations did not get rendered due to their size.
instance List.instGetElemListNatLtInstLTNatLength {α : Type u} :
GetElem (List α) Nat α fun (as : List α) (i : Nat) => i < List.length as
Equations
  • List.instGetElemListNatLtInstLTNatLength = { getElem := fun (as : List α) (i : Nat) (h : i < List.length as) => List.get as { val := i, isLt := h } }
@[simp]
theorem List.cons_getElem_zero {α : Type u} (a : α) (as : List α) (h : 0 < List.length (a :: as)) :
(a :: as)[0] = a
@[simp]
theorem List.cons_getElem_succ {α : Type u} (a : α) (as : List α) (i : Nat) (h : i + 1 < List.length (a :: as)) :
(a :: as)[i + 1] = as[i]
theorem List.length_add_eq_lengthTRAux {α : Type u} (as : List α) (n : Nat) :
@[simp]
theorem List.length_nil {α : Type u} :
def List.reverseAux {α : Type u} :
List αList αList α

Auxiliary for List.reverse. List.reverseAux l r = l.reverse ++ r, but it is defined directly.

Equations
def List.reverse {α : Type u} (as : List α) :
List α

O(|as|). Reverse of a list:

  • [1, 2, 3, 4].reverse = [4, 3, 2, 1]

Note that because of the "functional but in place" optimization implemented by Lean's compiler, this function works without any allocations provided that the input list is unshared: it simply walks the linked list and reverses all the node pointers.

Equations
theorem List.reverseAux_reverseAux {α : Type u} (as : List α) (bs : List α) (cs : List α) :
@[simp]
theorem List.reverse_reverse {α : Type u} (as : List α) :
def List.append {α : Type u} (xs : List α) (ys : List α) :
List α

O(|xs|): append two lists. [1, 2, 3] ++ [4, 5] = [1, 2, 3, 4, 5]. It takes time proportional to the first list.

Equations
def List.appendTR {α : Type u} (as : List α) (bs : List α) :
List α

Tail-recursive version of List.append.

Equations
instance List.instAppendList {α : Type u} :
Equations
  • List.instAppendList = { append := List.append }
@[simp]
theorem List.nil_append {α : Type u} (as : List α) :
[] ++ as = as
@[simp]
theorem List.append_nil {α : Type u} (as : List α) :
as ++ [] = as
@[simp]
theorem List.cons_append {α : Type u} (a : α) (as : List α) (bs : List α) :
a :: as ++ bs = a :: (as ++ bs)
@[simp]
theorem List.append_eq {α : Type u} (as : List α) (bs : List α) :
List.append as bs = as ++ bs
@[simp]
theorem List.append_assoc {α : Type u} (as : List α) (bs : List α) (cs : List α) :
as ++ bs ++ cs = as ++ (bs ++ cs)
theorem List.append_cons {α : Type u} (as : List α) (b : α) (bs : List α) :
as ++ b :: bs = as ++ [b] ++ bs
Equations
  • List.instEmptyCollectionList = { emptyCollection := [] }
def List.erase {α : Type u_1} [BEq α] :
List ααList α

O(|l|). erase l a removes the first occurrence of a from l.

  • erase [1, 5, 3, 2, 5] 5 = [1, 3, 2, 5]
  • erase [1, 5, 3, 2, 5] 6 = [1, 5, 3, 2, 5]
Equations
def List.eraseIdx {α : Type u} :
List αNatList α

O(i). eraseIdx l i removes the i'th element of the list l.

  • erase [a, b, c, d, e] 0 = [b, c, d, e]
  • erase [a, b, c, d, e] 1 = [a, c, d, e]
  • erase [a, b, c, d, e] 5 = [a, b, c, d, e]
Equations
def List.isEmpty {α : Type u} :
List αBool

O(1). isEmpty l is true if the list is empty.

Equations
@[specialize #[]]
def List.map {α : Type u} {β : Type v} (f : αβ) :
List αList β

O(|l|). map f l applies f to each element of the list.

  • map f [a, b, c] = [f a, f b, f c]
Equations
Instances For
@[inline]
def List.mapTR {α : Type u} {β : Type v} (f : αβ) (as : List α) :
List β

Tail-recursive version of List.map.

Equations
@[specialize #[]]
def List.mapTR.loop {α : Type u} {β : Type v} (f : αβ) :
List αList βList β
Equations
theorem List.reverseAux_eq_append {α : Type u} (as : List α) (bs : List α) :
@[simp]
theorem List.reverse_nil {α : Type u} :
@[simp]
theorem List.reverse_cons {α : Type u} (a : α) (as : List α) :
@[simp]
theorem List.reverse_append {α : Type u} (as : List α) (bs : List α) :
theorem List.mapTR_loop_eq {α : Type u} {β : Type v} (f : αβ) (as : List α) (bs : List β) :
def List.join {α : Type u} :
List (List α)List α

O(|join L|). join L concatenates all the lists in L into one list.

  • join [[a], [], [b, c], [d, e, f]] = [a, b, c, d, e, f]
Equations
@[specialize #[]]
def List.filterMap {α : Type u} {β : Type v} (f : αOption β) :
List αList β

O(|l|). filterMap f l takes a function f : α → Option β and applies it to each element of l; the resulting non-none values are collected to form the output list.

filterMap
  (fun x => if x > 2 then some (2 * x) else none)
  [1, 2, 5, 2, 7, 7]
= [10, 14, 14]
Equations
def List.filter {α : Type u} (p : αBool) :
List αList α

O(|l|). filter f l returns the list of elements in l for which f returns true.

filter (· > 2) [1, 2, 5, 2, 7, 7] = [5, 7, 7]
Equations
@[inline]
def List.filterTR {α : Type u} (p : αBool) (as : List α) :
List α

Tail-recursive version of List.filter.

Equations
@[specialize #[]]
def List.filterTR.loop {α : Type u} (p : αBool) :
List αList αList α
Equations
theorem List.filterTR_loop_eq {α : Type u} (p : αBool) (as : List α) (bs : List α) :
@[inline]
def List.partition {α : Type u} (p : αBool) (as : List α) :
List α × List α

O(|l|). partition p l calls p on each element of l, partitioning the list into two lists (l_true, l_false) where l_true has the elements where p was true and l_false has the elements where p is false. partition p l = (filter p l, filter (not ∘ p) l), but it is slightly more efficient since it only has to do one pass over the list.

partition (· > 2) [1, 2, 5, 2, 7, 7] = ([5, 7, 7], [1, 2, 2])
Equations
@[specialize #[]]
def List.partition.loop {α : Type u} (p : αBool) :
List αList α × List αList α × List α
Equations
def List.dropWhile {α : Type u} (p : αBool) :
List αList α

O(|l|). dropWhile p l removes elements from the list until it finds the first element for which p returns false; this element and everything after it is returned.

dropWhile (· < 4) [1, 3, 2, 4, 2, 7, 4] = [4, 2, 7, 4]
Equations
def List.find? {α : Type u} (p : αBool) :
List αOption α

O(|l|). find? p l returns the first element for which p returns true, or none if no such element is found.

  • find? (· < 5) [7, 6, 5, 8, 1, 2, 6] = some 1
  • find? (· < 1) [7, 6, 5, 8, 1, 2, 6] = none
Equations
def List.findSome? {α : Type u} {β : Type v} (f : αOption β) :
List αOption β

O(|l|). findSome? f l applies f to each element of l, and returns the first non-none result.

  • findSome? (fun x => if x < 5 then some (10 * x) else none) [7, 6, 5, 8, 1, 2, 6] = some 10
Equations
def List.replace {α : Type u} [BEq α] :
List αααList α

O(|l|). replace l a b replaces the first element in the list equal to a with b.

  • replace [1, 4, 2, 3, 3, 7] 3 6 = [1, 4, 2, 6, 3, 7]
  • replace [1, 4, 2, 3, 3, 7] 5 6 = [1, 4, 2, 3, 3, 7]
Equations
def List.elem {α : Type u} [BEq α] (a : α) :
List αBool

O(|l|). elem a l or l.contains a is true if there is an element in l equal to a.

  • elem 3 [1, 4, 2, 3, 3, 7] = true
  • elem 5 [1, 4, 2, 3, 3, 7] = false
Equations
def List.notElem {α : Type u} [BEq α] (a : α) (as : List α) :

notElem a l is !(elem a l).

Equations
@[inline, reducible]
abbrev List.contains {α : Type u} [BEq α] (as : List α) (a : α) :

O(|l|). elem a l or l.contains a is true if there is an element in l equal to a.

  • elem 3 [1, 4, 2, 3, 3, 7] = true
  • elem 5 [1, 4, 2, 3, 3, 7] = false
Equations
inductive List.Mem {α : Type u} (a : α) :
List αProp

a ∈ l is a predicate which asserts that a is in the list l. Unlike elem, this uses = instead of == and is suited for mathematical reasoning.

  • a ∈ [x, y, z] ↔ a = x ∨ a = y ∨ a = z
  • head: ∀ {α : Type u} {a : α} (as : List α), List.Mem a (a :: as)

    The head of a list is a member: a ∈ a :: as.

  • tail: ∀ {α : Type u} {a : α} (b : α) {as : List α}, List.Mem a asList.Mem a (b :: as)

    A member of the tail of a list is a member of the list: a ∈ l → a ∈ b :: l.

instance List.instMembershipList {α : Type u} :
Equations
  • List.instMembershipList = { mem := List.Mem }
theorem List.mem_of_elem_eq_true {α : Type u} [BEq α] [LawfulBEq α] {a : α} {as : List α} :
List.elem a as = truea as
theorem List.elem_eq_true_of_mem {α : Type u} [BEq α] [LawfulBEq α] {a : α} {as : List α} (h : a as) :
theorem List.mem_append_of_mem_left {α : Type u} {a : α} {as : List α} (bs : List α) :
a asa as ++ bs
theorem List.mem_append_of_mem_right {α : Type u} {b : α} {bs : List α} (as : List α) :
b bsb as ++ bs
def List.eraseDups {α : Type u_1} [BEq α] (as : List α) :
List α

O(|l|^2). Erase duplicated elements in the list. Keeps the first occurrence of duplicated elements.

  • eraseDups [1, 3, 2, 2, 3, 5] = [1, 3, 2, 5]
Equations
def List.eraseDups.loop {α : Type u_1} [BEq α] :
List αList αList α
Equations
def List.eraseReps {α : Type u_1} [BEq α] :
List αList α

O(|l|). Erase repeated adjacent elements. Keeps the first occurrence of each run.

  • eraseReps [1, 3, 2, 2, 2, 3, 5] = [1, 3, 2, 3, 5]
Equations
def List.eraseReps.loop {α : Type u_1} [BEq α] :
αList αList αList α
Equations
@[inline]
def List.span {α : Type u} (p : αBool) (as : List α) :
List α × List α

O(|l|). span p l splits the list l into two parts, where the first part contains the longest initial segment for which p returns true and the second part is everything else.

  • span (· > 5) [6, 8, 9, 5, 2, 9] = ([6, 8, 9], [5, 2, 9])
  • span (· > 10) [6, 8, 9, 5, 2, 9] = ([6, 8, 9, 5, 2, 9], [])
Equations
@[specialize #[]]
def List.span.loop {α : Type u} (p : αBool) :
List αList αList α × List α
Equations
@[specialize #[]]
def List.groupBy {α : Type u} (R : ααBool) :
List αList (List α)

O(|l|). groupBy R l splits l into chains of elements such that adjacent elements are related by R.

  • groupBy (·==·) [1, 1, 2, 2, 2, 3, 2] = [[1, 1], [2, 2, 2], [3], [2]]
  • groupBy (·<·) [1, 2, 5, 4, 5, 1, 4] = [[1, 2, 5], [4, 5], [1, 4]]
Equations
@[specialize #[]]
def List.groupBy.loop {α : Type u} (R : ααBool) :
List ααList αList (List α)List (List α)
Equations
def List.lookup {α : Type u} {β : Type v} [BEq α] :
αList (α × β)Option β

O(|l|). lookup a l treats l : List (α × β) like an association list, and returns the first β value corresponding to an α value in the list equal to a.

  • lookup 3 [(1, 2), (3, 4), (3, 5)] = some 4
  • lookup 2 [(1, 2), (3, 4), (3, 5)] = none
Equations
def List.removeAll {α : Type u} [BEq α] (xs : List α) (ys : List α) :
List α

O(|xs|). Computes the "set difference" of lists, by filtering out all elements of xs which are also in ys.

  • removeAll [1, 1, 5, 1, 2, 4, 5] [1, 2, 2] = [5, 4, 5]
Equations
def List.drop {α : Type u} :
NatList αList α

O(min n |xs|). Removes the first n elements of xs.

  • drop 0 [a, b, c, d, e] = [a, b, c, d, e]
  • drop 3 [a, b, c, d, e] = [d, e]
  • drop 6 [a, b, c, d, e] = []
Equations
@[simp]
theorem List.drop_nil {α : Type u} {i : Nat} :
List.drop i [] = []
theorem List.get_drop_eq_drop {α : Type u} (as : List α) (i : Nat) (h : i < List.length as) :
as[i] :: List.drop (i + 1) as = List.drop i as
def List.take {α : Type u} :
NatList αList α

O(min n |xs|). Returns the first n elements of xs, or the whole list if n is too large.

  • take 0 [a, b, c, d, e] = []
  • take 3 [a, b, c, d, e] = [a, b, c]
  • take 6 [a, b, c, d, e] = [a, b, c, d, e]
Equations
def List.takeWhile {α : Type u} (p : αBool) (xs : List α) :
List α

O(|xs|). Returns the longest initial segment of xs for which p returns true.

Equations
@[specialize #[]]
def List.foldr {α : Type u} {β : Type v} (f : αββ) (init : β) :
List αβ

O(|l|). Applies function f to all of the elements of the list, from right to left.

  • foldr f init [a, b, c] = f a <| f b <| f c <| init
Equations
def List.any {α : Type u} :
List α(αBool)Bool

O(|l|). Returns true if p is true for any element of l.

  • any p [a, b, c] = p a || p b || p c

Short-circuits upon encountering the first true.

Equations
def List.all {α : Type u} :
List α(αBool)Bool

O(|l|). Returns true if p is true for every element of l.

  • all p [a, b, c] = p a && p b && p c

Short-circuits upon encountering the first false.

Equations
def List.or (bs : List Bool) :

O(|l|). Returns true if true is an element of the list of booleans l.

  • or [a, b, c] = a || b || c
Equations
def List.and (bs : List Bool) :

O(|l|). Returns true if every element of l is the value true.

  • and [a, b, c] = a && b && c
Equations
@[specialize #[]]
def List.zipWith {α : Type u} {β : Type v} {γ : Type w} (f : αβγ) (xs : List α) (ys : List β) :
List γ

O(min |xs| |ys|). Applies f to the two lists in parallel, stopping at the shorter list.

  • zipWith f [x₁, x₂, x₃] [y₁, y₂, y₃, y₄] = [f x₁ y₁, f x₂ y₂, f x₃ y₃]
Equations
Instances For
def List.zip {α : Type u} {β : Type v} :
List αList βList (α × β)

O(min |xs| |ys|). Combines the two lists into a list of pairs, with one element from each list. The longer list is truncated to match the shorter list.

  • zip [x₁, x₂, x₃] [y₁, y₂, y₃, y₄] = [(x₁, y₁), (x₂, y₂), (x₃, y₃)]
Equations
def List.zipWithAll {α : Type u} {β : Type v} {γ : Type w} (f : Option αOption βγ) :
List αList βList γ

O(max |xs| |ys|). Version of List.zipWith that continues to the end of both lists, passing none to one argument once the shorter list has run out.

Equations
@[simp]
theorem List.zipWithAll_nil_right :
∀ {α : Type u_1} {α_1 : Type u_2} {α_2 : Type u_3} {f : Option αOption α_1α_2} {as : List α}, List.zipWithAll f as [] = List.map (fun (a : α) => f (some a) none) as
@[simp]
theorem List.zipWithAll_nil_left :
∀ {α : Type u_1} {α_1 : Type u_2} {α_2 : Type u_3} {f : Option αOption α_1α_2} {bs : List α_1}, List.zipWithAll f [] bs = List.map (fun (b : α_1) => f none (some b)) bs
@[simp]
theorem List.zipWithAll_cons_cons :
∀ {α : Type u_1} {α_1 : Type u_2} {α_2 : Type u_3} {f : Option αOption α_1α_2} {a : α} {as : List α} {b : α_1} {bs : List α_1}, List.zipWithAll f (a :: as) (b :: bs) = f (some a) (some b) :: List.zipWithAll f as bs
def List.unzip {α : Type u} {β : Type v} :
List (α × β)List α × List β

O(|l|). Separates a list of pairs into two lists containing the first components and second components.

  • unzip [(x₁, y₁), (x₂, y₂), (x₃, y₃)] = ([x₁, x₂, x₃], [y₁, y₂, y₃])
Equations
def List.range (n : Nat) :

O(n). range n is the numbers from 0 to n exclusive, in increasing order.

  • range 5 = [0, 1, 2, 3, 4]
Equations

O(n). iota n is the numbers from 1 to n inclusive, in decreasing order.

  • iota 5 = [5, 4, 3, 2, 1]
Equations
def List.iotaTR (n : Nat) :

Tail-recursive version of iota.

Equations
def List.enumFrom {α : Type u} :
NatList αList (Nat × α)

O(|l|). enumFrom n l is like enum but it allows you to specify the initial index.

  • enumFrom 5 [a, b, c] = [(5, a), (6, b), (7, c)]
Equations
def List.enum {α : Type u} :
List αList (Nat × α)

O(|l|). enum l pairs up each element with its index in the list.

  • enum [a, b, c] = [(0, a), (1, b), (2, c)]
Equations
def List.intersperse {α : Type u} (sep : α) :
List αList α

O(|l|). intersperse sep l alternates sep and the elements of l:

Equations
def List.intercalate {α : Type u} (sep : List α) (xs : List (List α)) :
List α

O(|xs|). intercalate sep xs alternates sep and the elements of xs:

Equations
@[inline]
def List.bind {α : Type u} {β : Type v} (a : List α) (b : αList β) :
List β

bind xs f is the bind operation of the list monad. It applies f to each element of xs to get a list of lists, and then concatenates them all together.

  • [2, 3, 2].bind range = [0, 1, 0, 1, 2, 0, 1]
Equations
@[inline]
def List.pure {α : Type u} (a : α) :
List α

pure x = [x] is the pure operation of the list monad.

Equations
inductive List.lt {α : Type u} [LT α] :
List αList αProp

The lexicographic order on lists. [] < a::as, and a::as < b::bs if a < b or if a and b are equivalent and as < bs.

  • nil: ∀ {α : Type u} [inst : LT α] (b : α) (bs : List α), List.lt [] (b :: bs)

    [] is the smallest element in the order.

  • head: ∀ {α : Type u} [inst : LT α] {a : α} (as : List α) {b : α} (bs : List α), a < bList.lt (a :: as) (b :: bs)

    If a < b then a::as < b::bs.

  • tail: ∀ {α : Type u} [inst : LT α] {a : α} {as : List α} {b : α} {bs : List α}, ¬a < b¬b < aList.lt as bsList.lt (a :: as) (b :: bs)

    If a and b are equivalent and as < bs, then a::as < b::bs.

instance List.instLTList {α : Type u} [LT α] :
LT (List α)
Equations
  • List.instLTList = { lt := List.lt }
instance List.hasDecidableLt {α : Type u} [LT α] [h : DecidableRel fun (x x_1 : α) => x < x_1] (l₁ : List α) (l₂ : List α) :
Decidable (l₁ < l₂)
Equations
@[reducible]
def List.le {α : Type u} [LT α] (a : List α) (b : List α) :

The lexicographic order on lists.

Equations
instance List.instLEList {α : Type u} [LT α] :
LE (List α)
Equations
  • List.instLEList = { le := List.le }
instance List.instForAllListDecidableLeInstLEList {α : Type u} [LT α] [DecidableRel fun (x x_1 : α) => x < x_1] (l₁ : List α) (l₂ : List α) :
Decidable (l₁ l₂)
Equations
def List.isPrefixOf {α : Type u} [BEq α] :
List αList αBool

isPrefixOf l₁ l₂ returns true Iff l₁ is a prefix of l₂. That is, there exists a t such that l₂ == l₁ ++ t.

Equations
def List.isPrefixOf? {α : Type u} [BEq α] :
List αList αOption (List α)

isPrefixOf? l₁ l₂ returns some t when l₂ == l₁ ++ t.

Equations
def List.isSuffixOf {α : Type u} [BEq α] (l₁ : List α) (l₂ : List α) :

isSuffixOf l₁ l₂ returns true Iff l₁ is a suffix of l₂. That is, there exists a t such that l₂ == t ++ l₁.

Equations
def List.isSuffixOf? {α : Type u} [BEq α] (l₁ : List α) (l₂ : List α) :

isSuffixOf? l₁ l₂ returns some t when l₂ == t ++ l₁.

Equations
@[specialize #[]]
def List.isEqv {α : Type u} (as : List α) (bs : List α) (eqv : ααBool) :

O(min |as| |bs|). Returns true if as and bs have the same length, and they are pairwise related by eqv.

Equations
def List.beq {α : Type u} [BEq α] :
List αList αBool

The equality relation on lists asserts that they have the same length and they are pairwise BEq.

Equations
instance List.instBEqList {α : Type u} [BEq α] :
BEq (List α)
Equations
  • List.instBEqList = { beq := List.beq }
def List.replicate {α : Type u} (n : Nat) (a : α) :
List α

replicate n a is n copies of a:

Equations
def List.replicateTR {α : Type u} (n : Nat) (a : α) :
List α

Tail-recursive version of List.replicate.

Equations
def List.replicateTR.loop {α : Type u} (a : α) :
NatList αList α
Equations
def List.dropLast {α : Type u_1} :
List αList α

Removes the last element of the list.

Equations
@[simp]
theorem List.length_replicate {α : Type u} (n : Nat) (a : α) :
@[simp]
theorem List.length_concat {α : Type u} (as : List α) (a : α) :
@[simp]
theorem List.length_set {α : Type u} (as : List α) (i : Nat) (a : α) :
@[simp]
theorem List.length_dropLast_cons {α : Type u} (a : α) (as : List α) :
@[simp]
theorem List.length_append {α : Type u} (as : List α) (bs : List α) :
@[simp]
theorem List.length_map {α : Type u} {β : Type v} (as : List α) (f : αβ) :
@[simp]
theorem List.length_reverse {α : Type u} (as : List α) :
def List.maximum? {α : Type u} [Max α] :
List αOption α

Returns the largest element of the list, if it is not empty.

Equations
def List.minimum? {α : Type u} [Min α] :
List αOption α

Returns the smallest element of the list, if it is not empty.

Equations
@[inline]
def List.insert {α : Type u} [BEq α] (a : α) (l : List α) :
List α

Inserts an element into a list without duplication.

Equations
instance List.decidableBEx {α : Type u} (p : αProp) [DecidablePred p] (l : List α) :
Decidable (∃ (x : α), x l p x)
Equations
instance List.decidableBAll {α : Type u} (p : αProp) [DecidablePred p] (l : List α) :
Decidable (∀ (x : α), x lp x)
Equations
Equations
  • =
theorem List.of_concat_eq_concat {α : Type u} {as : List α} {bs : List α} {a : α} {b : α} (h : List.concat as a = List.concat bs b) :
as = bs a = b
@[simp]
theorem List.concat_eq_append {α : Type u} (as : List α) (a : α) :
List.concat as a = as ++ [a]
theorem List.drop_eq_nil_of_le {α : Type u} {as : List α} {i : Nat} (h : List.length as i) :
List.drop i as = []