Documentation

Init.MetaTypes

Equations
structure Lean.Module :

Syntax objects for a Lean module.

Instances For
Instances For
  • zeta : Bool

    let x := v; e[x] reduces to e[v].

  • beta : Bool
  • eta : Bool
  • iota : Bool
  • proj : Bool
  • decide : Bool
  • autoUnfold : Bool
  • failIfUnchanged : Bool

    If failIfUnchanged := true, then calls to simp, dsimp, or simp_all will fail if they do not make progress.

  • unfoldPartialApp : Bool

    If unfoldPartialApp := true, then calls to simp, dsimp, or simp_all will unfold even partial applications of f when we request f to be unfolded.

  • zetaDelta : Bool

    Given a local context containing entry x : t := e, free variable x reduces to e.

Instances For
Equations
  • One or more equations did not get rendered due to their size.
  • maxSteps : Nat
  • maxDischargeDepth : Nat
  • contextual : Bool
  • memoize : Bool
  • singlePass : Bool
  • zeta : Bool

    let x := v; e[x] reduces to e[v].

  • beta : Bool
  • eta : Bool
  • iota : Bool
  • proj : Bool
  • decide : Bool
  • arith : Bool
  • autoUnfold : Bool
  • dsimp : Bool

    If dsimp := true, then switches to dsimp on dependent arguments where there is no congruence theorem that allows simp to visit them. If dsimp := false, then argument is not visited.

  • failIfUnchanged : Bool

    If failIfUnchanged := true, then calls to simp, dsimp, or simp_all will fail if they do not make progress.

  • ground : Bool

    If ground := true, then ground terms are reduced. A term is ground when it does not contain free or meta variables. Reduction is interrupted at a function application f ... if f is marked to not be unfolded.

  • unfoldPartialApp : Bool

    If unfoldPartialApp := true, then calls to simp, dsimp, or simp_all will unfold even partial applications of f when we request f to be unfolded.

  • zetaDelta : Bool

    Given a local context containing entry x : t := e, free variable x reduces to e.

Instances For
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.