Documentation

Lean.Data.PersistentHashMap

inductive Lean.PersistentHashMap.Entry (α : Type u) (β : Type v) (σ : Type w) :
Type (max (max u v) w)
Instances For
Equations
  • Lean.PersistentHashMap.instInhabitedEntry = { default := Lean.PersistentHashMap.Entry.null }
inductive Lean.PersistentHashMap.Node (α : Type u) (β : Type v) :
Type (max u v)
Instances For
Equations
Equations
@[inline, reducible]
abbrev Lean.PHashMap (α : Type u) (β : Type v) [BEq α] [Hashable α] :
Type (max u v)
Equations
def Lean.PersistentHashMap.empty {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
Equations
def Lean.PersistentHashMap.isEmpty {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] (m : Lean.PersistentHashMap α β) :
Equations
Equations
Equations
@[inline, reducible]
Equations
@[inline, reducible]
Equations
@[inline, reducible]
Equations
@[inline, reducible]
abbrev Lean.PersistentHashMap.CollisionNode (α : Type u_1) (β : Type u_2) :
Type (max 0 u_2 u_1)
Equations
@[inline, reducible]
abbrev Lean.PersistentHashMap.EntriesNode (α : Type u_1) (β : Type u_2) :
Type (max 0 u_2 u_1)
Equations
Equations
  • One or more equations did not get rendered due to their size.
def Lean.PersistentHashMap.mkCollisionNode {α : Type u_1} {β : Type u_2} (k₁ : α) (v₁ : β) (k₂ : α) (v₂ : β) :
Equations
  • One or more equations did not get rendered due to their size.
partial def Lean.PersistentHashMap.insertAux {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
partial def Lean.PersistentHashMap.insertAux.traverse {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] (depth : USize) (keys : Array α) (vals : Array β) (heq : Array.size keys = Array.size vals) (i : Nat) (entries : Lean.PersistentHashMap.Node α β) :
def Lean.PersistentHashMap.insert {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βαβLean.PersistentHashMap α β
Equations
  • One or more equations did not get rendered due to their size.
partial def Lean.PersistentHashMap.findAtAux {α : Type u_1} {β : Type u_2} [BEq α] (keys : Array α) (vals : Array β) (heq : Array.size keys = Array.size vals) (i : Nat) (k : α) :
partial def Lean.PersistentHashMap.findAux {α : Type u_1} {β : Type u_2} [BEq α] :
Lean.PersistentHashMap.Node α βUSizeαOption β
def Lean.PersistentHashMap.find? {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βαOption β
Equations
instance Lean.PersistentHashMap.instGetElemPersistentHashMapOptionTrue {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → GetElem (Lean.PersistentHashMap α β) α (Option β) fun (x : Lean.PersistentHashMap α β) (x : α) => True
Equations
@[inline]
def Lean.PersistentHashMap.findD {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βαββ
Equations
@[inline]
def Lean.PersistentHashMap.find! {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → [inst : Inhabited β] → Lean.PersistentHashMap α βαβ
Equations
  • One or more equations did not get rendered due to their size.
partial def Lean.PersistentHashMap.findEntryAtAux {α : Type u_1} {β : Type u_2} [BEq α] (keys : Array α) (vals : Array β) (heq : Array.size keys = Array.size vals) (i : Nat) (k : α) :
Option (α × β)
partial def Lean.PersistentHashMap.findEntryAux {α : Type u_1} {β : Type u_2} [BEq α] :
Lean.PersistentHashMap.Node α βUSizeαOption (α × β)
def Lean.PersistentHashMap.findEntry? {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βαOption (α × β)
Equations
partial def Lean.PersistentHashMap.containsAtAux {α : Type u_1} {β : Type u_2} [BEq α] (keys : Array α) (vals : Array β) (heq : Array.size keys = Array.size vals) (i : Nat) (k : α) :
partial def Lean.PersistentHashMap.containsAux {α : Type u_1} {β : Type u_2} [BEq α] :
def Lean.PersistentHashMap.contains {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
Lean.PersistentHashMap α βαBool
Equations
partial def Lean.PersistentHashMap.isUnaryEntries {α : Type u_1} {β : Type u_2} (a : Array (Lean.PersistentHashMap.Entry α β (Lean.PersistentHashMap.Node α β))) (i : Nat) (acc : Option (α × β)) :
Option (α × β)
Equations
  • One or more equations did not get rendered due to their size.
def Lean.PersistentHashMap.erase {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βαLean.PersistentHashMap α β
Equations
  • One or more equations did not get rendered due to their size.
partial def Lean.PersistentHashMap.foldlMAux {m : Type w → Type w'} [Monad m] {σ : Type w} {α : Type u_1} {β : Type u_2} (f : σαβm σ) :
Lean.PersistentHashMap.Node α βσm σ
partial def Lean.PersistentHashMap.foldlMAux.traverse {m : Type w → Type w'} [Monad m] {σ : Type w} {α : Type u_1} {β : Type u_2} (f : σαβm σ) (keys : Array α) (vals : Array β) (heq : Array.size keys = Array.size vals) (i : Nat) (acc : σ) :
m σ
def Lean.PersistentHashMap.foldlM {m : Type w → Type w'} [Monad m] {σ : Type w} {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α β(σαβm σ)σm σ
Equations
def Lean.PersistentHashMap.forM {m : Type w → Type w'} [Monad m] {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α β(αβm PUnit)m PUnit
Equations
def Lean.PersistentHashMap.foldl {σ : Type w} {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α β(σαβσ)σσ
Equations
def Lean.PersistentHashMap.forIn {m : Type w → Type w'} {σ : Type w} {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → [inst : Monad m] → Lean.PersistentHashMap α βσ(α × βσm (ForInStep σ))m σ
Equations
  • One or more equations did not get rendered due to their size.
instance Lean.PersistentHashMap.instForInPersistentHashMapProd {m : Type w → Type w'} {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → ForIn m (Lean.PersistentHashMap α β) (α × β)
Equations
  • Lean.PersistentHashMap.instForInPersistentHashMapProd = { forIn := fun {β_1 : Type w} [Monad m] => Lean.PersistentHashMap.forIn }
partial def Lean.PersistentHashMap.mapMAux {α : Type u} {β : Type v} {σ : Type u} {m : Type u → Type w} [Monad m] (f : βm σ) (n : Lean.PersistentHashMap.Node α β) :
def Lean.PersistentHashMap.mapM {α : Type u} {β : Type v} {σ : Type u} {m : Type u → Type w} [Monad m] :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α β(βm σ)m (Lean.PersistentHashMap α σ)
Equations
def Lean.PersistentHashMap.map {α : Type u} {β : Type v} {σ : Type u} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α β(βσ)Lean.PersistentHashMap α σ
Equations
def Lean.PersistentHashMap.toList {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βList (α × β)
Equations
  • numNodes : Nat
  • numNull : Nat
  • numCollisions : Nat
  • maxDepth : Nat
Instances For
def Lean.PersistentHashMap.stats {α : Type u_1} {β : Type u_2} :
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashMap α βLean.PersistentHashMap.Stats
Equations
Equations
  • One or more equations did not get rendered due to their size.