Documentation

Mathlib.Algebra.Group.Hom.Instances

Instances on spaces of monoid and group morphisms #

We endow the space of monoid morphisms M →* N with a CommMonoid structure when the target is commutative, through pointwise multiplication, and with a CommGroup structure when the target is a commutative group. We also prove the same instances for additive situations.

Since these structures permit morphisms of morphisms, we also provide some composition-like operations.

Finally, we provide the Ring structure on AddMonoid.End.

theorem AddMonoidHom.addCommMonoid.proof_3 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] :
∀ (a : M →+ N), a + 0 = a
theorem AddMonoidHom.addCommMonoid.proof_4 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] (n : ) (f : M →+ N) :
n f 0 = 0
theorem AddMonoidHom.addCommMonoid.proof_6 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] (f : M →+ N) :
(fun (n : ) (f : M →+ N) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) 0 f = 0

(M →+ N) is an AddCommMonoid if N is commutative.

Equations
theorem AddMonoidHom.addCommMonoid.proof_5 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] (n : ) (f : M →+ N) (x : M) (y : M) :
n f (x + y) = n f x + n f y
theorem AddMonoidHom.addCommMonoid.proof_7 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] (n : ) (f : M →+ N) :
(fun (n : ) (f : M →+ N) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) (n + 1) f = (fun (n : ) (f : M →+ N) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) n f + f
theorem AddMonoidHom.addCommMonoid.proof_8 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] :
∀ (a b : M →+ N), a + b = b + a
theorem AddMonoidHom.addCommMonoid.proof_1 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] :
∀ (a b c : M →+ N), a + b + c = a + (b + c)
theorem AddMonoidHom.addCommMonoid.proof_2 {M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddCommMonoid N] :
∀ (a : M →+ N), 0 + a = a
instance MonoidHom.commMonoid {M : Type uM} {N : Type uN} [MulOneClass M] [CommMonoid N] :

(M →* N) is a CommMonoid if N is commutative.

Equations
theorem AddMonoidHom.addCommGroup.proof_3 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (n : ) (f : M →+ G) (x : M) (y : M) :
n f (x + y) = n f x + n f y
theorem AddMonoidHom.addCommGroup.proof_8 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (a : M →+ G) (b : M →+ G) :
a + b = b + a
theorem AddMonoidHom.addCommGroup.proof_4 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (f : M →+ G) :
(fun (n : ) (f : M →+ G) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) 0 f = 0
instance AddMonoidHom.addCommGroup {M : Type u_1} {G : Type u_2} [AddZeroClass M] [AddCommGroup G] :

If G is an additive commutative group, then M →+ G is an additive commutative group too.

Equations
  • AddMonoidHom.addCommGroup = let __src := AddMonoidHom.addCommMonoid; AddCommGroup.mk
theorem AddMonoidHom.addCommGroup.proof_1 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] :
∀ (a b : M →+ G), a - b = a + -b
theorem AddMonoidHom.addCommGroup.proof_2 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (n : ) (f : M →+ G) :
n f 0 = 0
theorem AddMonoidHom.addCommGroup.proof_7 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] :
∀ (a : M →+ G), -a + a = 0
theorem AddMonoidHom.addCommGroup.proof_6 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (n : ) (f : M →+ G) :
(fun (n : ) (f : M →+ G) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) (Int.negSucc n) f = -(fun (n : ) (f : M →+ G) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) ((Nat.succ n)) f
theorem AddMonoidHom.addCommGroup.proof_5 {M : Type u_2} {G : Type u_1} [AddZeroClass M] [AddCommGroup G] (n : ) (f : M →+ G) :
(fun (n : ) (f : M →+ G) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) (Int.ofNat (Nat.succ n)) f = (fun (n : ) (f : M →+ G) => { toZeroHom := { toFun := fun (x : M) => n f x, map_zero' := }, map_add' := }) (Int.ofNat n) f + f
instance MonoidHom.commGroup {M : Type u_1} {G : Type u_2} [MulOneClass M] [CommGroup G] :

If G is a commutative group, then M →* G is a commutative group too.

Equations
  • MonoidHom.commGroup = let __src := MonoidHom.commMonoid; CommGroup.mk
Equations
  • AddMonoid.End.instAddCommMonoid = AddMonoidHom.addCommMonoid
Equations
@[simp]
theorem AddMonoid.End.natCast_apply {M : Type uM} [AddCommMonoid M] (n : ) (m : M) :
n m = n m

See also AddMonoid.End.natCast_def.

@[simp]
theorem AddMonoid.End.zero_apply {M : Type uM} [AddCommMonoid M] (m : M) :
0 m = 0
theorem AddMonoid.End.one_apply {M : Type uM} [AddCommMonoid M] (m : M) :
1 m = m
@[simp]
theorem AddMonoid.End.ofNat_apply {M : Type uM} [AddCommMonoid M] (n : ) [Nat.AtLeastTwo n] (m : M) :
(OfNat.ofNat n) m = n m
Equations
  • AddMonoid.End.instAddCommGroup = AddMonoidHom.addCommGroup
Equations
  • AddMonoid.End.instRing = let __src := AddMonoid.End.instSemiring; let __src_1 := AddMonoid.End.instAddCommGroup; Ring.mk SubNegMonoid.zsmul
@[simp]
theorem AddMonoid.End.int_cast_apply {M : Type uM} [AddCommGroup M] (z : ) (m : M) :
z m = z m

See also AddMonoid.End.intCast_def.

Morphisms of morphisms #

The structures above permit morphisms that themselves produce morphisms, provided the codomain is commutative.

theorem AddMonoidHom.ext_iff₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} {f g : M →+ N →+ P}, f = g ∀ (x_3 : M) (y : N), (f x_3) y = (g x_3) y
theorem MonoidHom.ext_iff₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : MulOneClass M} {x_1 : MulOneClass N} {x_2 : CommMonoid P} {f g : M →* N →* P}, f = g ∀ (x_3 : M) (y : N), (f x_3) y = (g x_3) y
theorem AddMonoidHom.flip.proof_1 {M : Type u_3} {N : Type u_2} {P : Type u_1} {mM : AddZeroClass M} {mN : AddZeroClass N} {mP : AddCommMonoid P} (f : M →+ N →+ P) (y : N) :
(f 0) y = 0
def AddMonoidHom.flip {M : Type uM} {N : Type uN} {P : Type uP} {mM : AddZeroClass M} {mN : AddZeroClass N} {mP : AddCommMonoid P} (f : M →+ N →+ P) :
N →+ M →+ P

flip arguments of f : M →+ N →+ P

Equations
  • One or more equations did not get rendered due to their size.
theorem AddMonoidHom.flip.proof_2 {M : Type u_3} {N : Type u_2} {P : Type u_1} {mM : AddZeroClass M} {mN : AddZeroClass N} {mP : AddCommMonoid P} (f : M →+ N →+ P) (y : N) (x₁ : M) (x₂ : M) :
(f (x₁ + x₂)) y = (f x₁) y + (f x₂) y
theorem AddMonoidHom.flip.proof_3 {M : Type u_1} {N : Type u_3} {P : Type u_2} {mM : AddZeroClass M} {mN : AddZeroClass N} {mP : AddCommMonoid P} (f : M →+ N →+ P) :
(fun (y : N) => { toZeroHom := { toFun := fun (x : M) => (f x) y, map_zero' := }, map_add' := }) 0 = 0
theorem AddMonoidHom.flip.proof_4 {M : Type u_1} {N : Type u_3} {P : Type u_2} {mM : AddZeroClass M} {mN : AddZeroClass N} {mP : AddCommMonoid P} (f : M →+ N →+ P) (y₁ : N) (y₂ : N) :
{ toFun := fun (y : N) => { toZeroHom := { toFun := fun (x : M) => (f x) y, map_zero' := }, map_add' := }, map_zero' := }.toFun (y₁ + y₂) = { toFun := fun (y : N) => { toZeroHom := { toFun := fun (x : M) => (f x) y, map_zero' := }, map_add' := }, map_zero' := }.toFun y₁ + { toFun := fun (y : N) => { toZeroHom := { toFun := fun (x : M) => (f x) y, map_zero' := }, map_add' := }, map_zero' := }.toFun y₂
def MonoidHom.flip {M : Type uM} {N : Type uN} {P : Type uP} {mM : MulOneClass M} {mN : MulOneClass N} {mP : CommMonoid P} (f : M →* N →* P) :
N →* M →* P

flip arguments of f : M →* N →* P

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AddMonoidHom.flip_apply {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} (f : M →+ N →+ P) (x_3 : M) (y : N), ((AddMonoidHom.flip f) y) x_3 = (f x_3) y
@[simp]
theorem MonoidHom.flip_apply {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : MulOneClass M} {x_1 : MulOneClass N} {x_2 : CommMonoid P} (f : M →* N →* P) (x_3 : M) (y : N), ((MonoidHom.flip f) y) x_3 = (f x_3) y
theorem AddMonoidHom.map_one₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} (f : M →+ N →+ P) (n : N), (f 0) n = 0
theorem MonoidHom.map_one₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : MulOneClass M} {x_1 : MulOneClass N} {x_2 : CommMonoid P} (f : M →* N →* P) (n : N), (f 1) n = 1
theorem AddMonoidHom.map_mul₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} (f : M →+ N →+ P) (m₁ m₂ : M) (n : N), (f (m₁ + m₂)) n = (f m₁) n + (f m₂) n
theorem MonoidHom.map_mul₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : MulOneClass M} {x_1 : MulOneClass N} {x_2 : CommMonoid P} (f : M →* N →* P) (m₁ m₂ : M) (n : N), (f (m₁ * m₂)) n = (f m₁) n * (f m₂) n
theorem AddMonoidHom.map_inv₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddGroup M} {x_1 : AddZeroClass N} {x_2 : AddCommGroup P} (f : M →+ N →+ P) (m : M) (n : N), (f (-m)) n = -(f m) n
theorem MonoidHom.map_inv₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : Group M} {x_1 : MulOneClass N} {x_2 : CommGroup P} (f : M →* N →* P) (m : M) (n : N), (f m⁻¹) n = ((f m) n)⁻¹
theorem AddMonoidHom.map_div₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddGroup M} {x_1 : AddZeroClass N} {x_2 : AddCommGroup P} (f : M →+ N →+ P) (m₁ m₂ : M) (n : N), (f (m₁ - m₂)) n = (f m₁) n - (f m₂) n
theorem MonoidHom.map_div₂ {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : Group M} {x_1 : MulOneClass N} {x_2 : CommGroup P} (f : M →* N →* P) (m₁ m₂ : M) (n : N), (f (m₁ / m₂)) n = (f m₁) n / (f m₂) n
def AddMonoidHom.eval {M : Type uM} {N : Type uN} [AddZeroClass M] [AddCommMonoid N] :
M →+ (M →+ N) →+ N

Evaluation of an AddMonoidHom at a point as an additive monoid homomorphism. See also AddMonoidHom.apply for the evaluation of any function at a point.

Equations
@[simp]
theorem MonoidHom.eval_apply_apply {M : Type uM} {N : Type uN} [MulOneClass M] [CommMonoid N] (y : M) (x : M →* N) :
(MonoidHom.eval y) x = x y
@[simp]
theorem AddMonoidHom.eval_apply_apply {M : Type uM} {N : Type uN} [AddZeroClass M] [AddCommMonoid N] (y : M) (x : M →+ N) :
(AddMonoidHom.eval y) x = x y
def MonoidHom.eval {M : Type uM} {N : Type uN} [MulOneClass M] [CommMonoid N] :
M →* (M →* N) →* N

Evaluation of a MonoidHom at a point as a monoid homomorphism. See also MonoidHom.apply for the evaluation of any function at a point.

Equations
def AddMonoidHom.compHom' {M : Type uM} {N : Type uN} {P : Type uP} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] (f : M →+ N) :
(N →+ P) →+ M →+ P

The expression fun g m ↦ g (f m) as an AddMonoidHom. Equivalently, (fun g ↦ AddMonoidHom.comp g f) as an AddMonoidHom.

This also exists in a LinearMap version, LinearMap.lcomp.

Equations
@[simp]
theorem AddMonoidHom.compHom'_apply_apply {M : Type uM} {N : Type uN} {P : Type uP} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] (f : M →+ N) (y : N →+ P) (x : M) :
((AddMonoidHom.compHom' f) y) x = y (f x)
@[simp]
theorem MonoidHom.compHom'_apply_apply {M : Type uM} {N : Type uN} {P : Type uP} [MulOneClass M] [MulOneClass N] [CommMonoid P] (f : M →* N) (y : N →* P) (x : M) :
((MonoidHom.compHom' f) y) x = y (f x)
def MonoidHom.compHom' {M : Type uM} {N : Type uN} {P : Type uP} [MulOneClass M] [MulOneClass N] [CommMonoid P] (f : M →* N) :
(N →* P) →* M →* P

The expression fun g m ↦ g (f m) as a MonoidHom. Equivalently, (fun g ↦ MonoidHom.comp g f) as a MonoidHom.

Equations
theorem AddMonoidHom.compHom.proof_1 {M : Type u_1} {N : Type u_3} {P : Type u_2} [AddZeroClass M] [AddCommMonoid N] [AddCommMonoid P] (g : N →+ P) :
theorem AddMonoidHom.compHom.proof_2 {M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddCommMonoid N] [AddCommMonoid P] :
(fun (g : N →+ P) => { toZeroHom := { toFun := AddMonoidHom.comp g, map_zero' := }, map_add' := }) 0 = 0
theorem AddMonoidHom.compHom.proof_3 {M : Type u_3} {N : Type u_2} {P : Type u_1} [AddZeroClass M] [AddCommMonoid N] [AddCommMonoid P] (g₁ : N →+ P) (g₂ : N →+ P) :
{ toFun := fun (g : N →+ P) => { toZeroHom := { toFun := AddMonoidHom.comp g, map_zero' := }, map_add' := }, map_zero' := }.toFun (g₁ + g₂) = { toFun := fun (g : N →+ P) => { toZeroHom := { toFun := AddMonoidHom.comp g, map_zero' := }, map_add' := }, map_zero' := }.toFun g₁ + { toFun := fun (g : N →+ P) => { toZeroHom := { toFun := AddMonoidHom.comp g, map_zero' := }, map_add' := }, map_zero' := }.toFun g₂
def AddMonoidHom.compHom {M : Type uM} {N : Type uN} {P : Type uP} [AddZeroClass M] [AddCommMonoid N] [AddCommMonoid P] :
(N →+ P) →+ (M →+ N) →+ M →+ P

Composition of additive monoid morphisms (AddMonoidHom.comp) as an additive monoid morphism.

Note that unlike AddMonoidHom.comp_hom' this requires commutativity of N.

This also exists in a LinearMap version, LinearMap.llcomp.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem MonoidHom.compHom_apply_apply {M : Type uM} {N : Type uN} {P : Type uP} [MulOneClass M] [CommMonoid N] [CommMonoid P] (g : N →* P) (hmn : M →* N) :
(MonoidHom.compHom g) hmn = MonoidHom.comp g hmn
@[simp]
theorem AddMonoidHom.compHom_apply_apply {M : Type uM} {N : Type uN} {P : Type uP} [AddZeroClass M] [AddCommMonoid N] [AddCommMonoid P] (g : N →+ P) (hmn : M →+ N) :
(AddMonoidHom.compHom g) hmn = AddMonoidHom.comp g hmn
def MonoidHom.compHom {M : Type uM} {N : Type uN} {P : Type uP} [MulOneClass M] [CommMonoid N] [CommMonoid P] :
(N →* P) →* (M →* N) →* M →* P

Composition of monoid morphisms (MonoidHom.comp) as a monoid morphism.

Note that unlike MonoidHom.comp_hom' this requires commutativity of N.

Equations
  • One or more equations did not get rendered due to their size.
def AddMonoidHom.flipHom {M : Type uM} {N : Type uN} {P : Type uP} :
{x : AddZeroClass M} → {x_1 : AddZeroClass N} → {x_2 : AddCommMonoid P} → (M →+ N →+ P) →+ N →+ M →+ P

Flipping arguments of additive monoid morphisms (AddMonoidHom.flip) as an additive monoid morphism.

Equations
  • AddMonoidHom.flipHom = { toZeroHom := { toFun := AddMonoidHom.flip, map_zero' := }, map_add' := }
theorem AddMonoidHom.flipHom.proof_1 {M : Type u_1} {N : Type u_2} {P : Type u_3} :
theorem AddMonoidHom.flipHom.proof_2 {M : Type u_3} {N : Type u_1} {P : Type u_2} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} (x_3 x_4 : M →+ N →+ P), { toFun := AddMonoidHom.flip, map_zero' := }.toFun (x_3 + x_4) = { toFun := AddMonoidHom.flip, map_zero' := }.toFun (x_3 + x_4)
@[simp]
theorem MonoidHom.flipHom_apply {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : MulOneClass M} {x_1 : MulOneClass N} {x_2 : CommMonoid P} (f : M →* N →* P), MonoidHom.flipHom f = MonoidHom.flip f
@[simp]
theorem AddMonoidHom.flipHom_apply {M : Type uM} {N : Type uN} {P : Type uP} :
∀ {x : AddZeroClass M} {x_1 : AddZeroClass N} {x_2 : AddCommMonoid P} (f : M →+ N →+ P), AddMonoidHom.flipHom f = AddMonoidHom.flip f
def MonoidHom.flipHom {M : Type uM} {N : Type uN} {P : Type uP} :
{x : MulOneClass M} → {x_1 : MulOneClass N} → {x_2 : CommMonoid P} → (M →* N →* P) →* N →* M →* P

Flipping arguments of monoid morphisms (MonoidHom.flip) as a monoid morphism.

Equations
  • MonoidHom.flipHom = { toOneHom := { toFun := MonoidHom.flip, map_one' := }, map_mul' := }
def AddMonoidHom.compl₂ {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddZeroClass Q] (f : M →+ N →+ P) (g : Q →+ N) :
M →+ Q →+ P

The expression fun m q ↦ f m (g q) as an AddMonoidHom.

Note that the expression fun q n ↦ f (g q) n is simply AddMonoidHom.comp.

This also exists as a LinearMap version, LinearMap.compl₂

Equations
def MonoidHom.compl₂ {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [MulOneClass M] [MulOneClass N] [CommMonoid P] [MulOneClass Q] (f : M →* N →* P) (g : Q →* N) :
M →* Q →* P

The expression fun m q ↦ f m (g q) as a MonoidHom.

Note that the expression fun q n ↦ f (g q) n is simply MonoidHom.comp.

Equations
@[simp]
theorem AddMonoidHom.compl₂_apply {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddZeroClass Q] (f : M →+ N →+ P) (g : Q →+ N) (m : M) (q : Q) :
((AddMonoidHom.compl₂ f g) m) q = (f m) (g q)
@[simp]
theorem MonoidHom.compl₂_apply {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [MulOneClass M] [MulOneClass N] [CommMonoid P] [MulOneClass Q] (f : M →* N →* P) (g : Q →* N) (m : M) (q : Q) :
((MonoidHom.compl₂ f g) m) q = (f m) (g q)
def AddMonoidHom.compr₂ {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddCommMonoid Q] (f : M →+ N →+ P) (g : P →+ Q) :
M →+ N →+ Q

The expression fun m n ↦ g (f m n) as an AddMonoidHom.

This also exists as a LinearMap version, LinearMap.compr₂

Equations
def MonoidHom.compr₂ {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [MulOneClass M] [MulOneClass N] [CommMonoid P] [CommMonoid Q] (f : M →* N →* P) (g : P →* Q) :
M →* N →* Q

The expression fun m n ↦ g (f m n) as a MonoidHom.

Equations
@[simp]
theorem AddMonoidHom.compr₂_apply {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [AddZeroClass M] [AddZeroClass N] [AddCommMonoid P] [AddCommMonoid Q] (f : M →+ N →+ P) (g : P →+ Q) (m : M) (n : N) :
((AddMonoidHom.compr₂ f g) m) n = g ((f m) n)
@[simp]
theorem MonoidHom.compr₂_apply {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [MulOneClass M] [MulOneClass N] [CommMonoid P] [CommMonoid Q] (f : M →* N →* P) (g : P →* Q) (m : M) (n : N) :
((MonoidHom.compr₂ f g) m) n = g ((f m) n)

Miscellaneous definitions #

Due to the fact this file imports Algebra.GroupPower.Basic, it is not possible to import it in some of the lower-level files like Algebra.Ring.Basic. The following lemmas should be rehomed if the import structure permits them to be.

Multiplication of an element of a (semi)ring is an AddMonoidHom in both arguments.

This is a more-strongly bundled version of AddMonoidHom.mulLeft and AddMonoidHom.mulRight.

Stronger versions of this exists for algebras as LinearMap.mul, NonUnitalAlgHom.mul and Algebra.lmul.

Equations
  • AddMonoidHom.mul = { toZeroHom := { toFun := AddMonoidHom.mulLeft, map_zero' := }, map_add' := }
theorem AddMonoidHom.mul_apply {R : Type u_1} [NonUnitalNonAssocSemiring R] (x : R) (y : R) :
(AddMonoidHom.mul x) y = x * y
@[simp]
theorem AddMonoidHom.coe_mul {R : Type u_1} [NonUnitalNonAssocSemiring R] :
AddMonoidHom.mul = AddMonoidHom.mulLeft
@[simp]
theorem AddMonoidHom.coe_flip_mul {R : Type u_1} [NonUnitalNonAssocSemiring R] :
(AddMonoidHom.flip AddMonoidHom.mul) = AddMonoidHom.mulRight
theorem AddMonoidHom.map_mul_iff {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →+ S) :
(∀ (x y : R), f (x * y) = f x * f y) AddMonoidHom.compr₂ AddMonoidHom.mul f = AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul f) f

An AddMonoidHom preserves multiplication if pre- and post- composition with AddMonoidHom.mul are equivalent. By converting the statement into an equality of AddMonoidHoms, this lemma allows various specialized ext lemmas about →+ to then be applied.

@[simp]
theorem AddMonoid.End.mulLeft_apply_apply {R : Type u_1} [NonUnitalNonAssocSemiring R] (r : R) :
∀ (x : R), (AddMonoid.End.mulLeft r) x = r * x

The left multiplication map: (a, b) ↦ a * b. See also AddMonoidHom.mulLeft.

Equations
  • AddMonoid.End.mulLeft = AddMonoidHom.mul
@[simp]
theorem AddMonoid.End.mulRight_apply_apply {R : Type u_1} [NonUnitalNonAssocSemiring R] (y : R) (x : R) :
(AddMonoid.End.mulRight y) x = x * y

The right multiplication map: (a, b) ↦ b * a. See also AddMonoidHom.mulRight.

Equations
theorem AddMonoid.End.mulRight_eq_mulLeft {R : Type u_1} [NonUnitalNonAssocCommSemiring R] :
AddMonoid.End.mulRight = AddMonoid.End.mulLeft