Documentation

Mathlib.Algebra.IsPrimePow

Prime powers #

This file deals with prime powers: numbers which are positive integer powers of a single prime.

def IsPrimePow {R : Type u_1} [CommMonoidWithZero R] (n : R) :

n is a prime power if there is a prime p and a positive natural k such that n can be written as p^k.

Equations
Instances For
theorem isPrimePow_def {R : Type u_1} [CommMonoidWithZero R] (n : R) :
IsPrimePow n ∃ (p : R) (k : ), Prime p 0 < k p ^ k = n
theorem isPrimePow_iff_pow_succ {R : Type u_1} [CommMonoidWithZero R] (n : R) :
IsPrimePow n ∃ (p : R) (k : ), Prime p p ^ (k + 1) = n

An equivalent definition for prime powers: n is a prime power iff there is a prime p and a natural k such that n can be written as p^(k+1).

theorem IsPrimePow.not_unit {R : Type u_1} [CommMonoidWithZero R] {n : R} (h : IsPrimePow n) :
theorem IsUnit.not_isPrimePow {R : Type u_1} [CommMonoidWithZero R] {n : R} (h : IsUnit n) :
theorem Prime.isPrimePow {R : Type u_1} [CommMonoidWithZero R] {p : R} (hp : Prime p) :
theorem IsPrimePow.pow {R : Type u_1} [CommMonoidWithZero R] {n : R} (hn : IsPrimePow n) {k : } (hk : k 0) :
theorem IsPrimePow.ne_zero {R : Type u_1} [CommMonoidWithZero R] [NoZeroDivisors R] {n : R} (h : IsPrimePow n) :
n 0
theorem IsPrimePow.ne_one {R : Type u_1} [CommMonoidWithZero R] {n : R} (h : IsPrimePow n) :
n 1
theorem isPrimePow_nat_iff (n : ) :
IsPrimePow n ∃ (p : ) (k : ), Nat.Prime p 0 < k p ^ k = n
theorem isPrimePow_nat_iff_bounded (n : ) :
IsPrimePow n ∃ p ≤ n, ∃ k ≤ n, Nat.Prime p 0 < k p ^ k = n
Equations
theorem IsPrimePow.dvd {n : } {m : } (hn : IsPrimePow n) (hm : m n) (hm₁ : m 1) :
theorem IsPrimePow.two_le {n : } :
IsPrimePow n2 n
theorem IsPrimePow.pos {n : } (hn : IsPrimePow n) :
0 < n
theorem IsPrimePow.one_lt {n : } (h : IsPrimePow n) :
1 < n