Box-additive functions defined by measures #
In this file we prove a few simple facts about rectangular boxes, partitions, and measures:
- given a box
I : Box ι
, its coercion toSet (ι → ℝ)
andI.Icc
are measurable sets; - if
μ
is a locally finite measure, then(I : Set (ι → ℝ))
andI.Icc
have finite measure; - if
μ
is a locally finite measure, thenfun J ↦ (μ J).toReal
is a box additive function.
For the last statement, we both prove it as a proposition and define a bundled
BoxIntegral.BoxAdditiveMap
function.
Tags #
rectangular box, measure
theorem
BoxIntegral.Box.measure_Icc_lt_top
{ι : Type u_1}
(I : BoxIntegral.Box ι)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
BoxIntegral.Box.measure_coe_lt_top
{ι : Type u_1}
(I : BoxIntegral.Box ι)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
BoxIntegral.Box.measurableSet_Icc
{ι : Type u_1}
(I : BoxIntegral.Box ι)
[Countable ι]
:
MeasurableSet (BoxIntegral.Box.Icc I)
theorem
BoxIntegral.Box.measurableSet_Ioo
{ι : Type u_1}
(I : BoxIntegral.Box ι)
[Countable ι]
:
MeasurableSet (BoxIntegral.Box.Ioo I)
theorem
BoxIntegral.Box.coe_ae_eq_Icc
{ι : Type u_1}
(I : BoxIntegral.Box ι)
[Fintype ι]
:
↑I =ᶠ[MeasureTheory.Measure.ae MeasureTheory.volume] BoxIntegral.Box.Icc I
theorem
BoxIntegral.Box.Ioo_ae_eq_Icc
{ι : Type u_1}
(I : BoxIntegral.Box ι)
[Fintype ι]
:
BoxIntegral.Box.Ioo I =ᶠ[MeasureTheory.Measure.ae MeasureTheory.volume] BoxIntegral.Box.Icc I
theorem
BoxIntegral.Prepartition.measure_iUnion_toReal
{ι : Type u_1}
[Finite ι]
{I : BoxIntegral.Box ι}
(π : BoxIntegral.Prepartition I)
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
(↑↑μ (BoxIntegral.Prepartition.iUnion π)).toReal = Finset.sum π.boxes fun (J : BoxIntegral.Box ι) => (↑↑μ ↑J).toReal
@[simp]
theorem
MeasureTheory.Measure.toBoxAdditive_apply
{ι : Type u_1}
[Finite ι]
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
(J : BoxIntegral.Box ι)
:
(MeasureTheory.Measure.toBoxAdditive μ) J = (↑↑μ ↑J).toReal
def
MeasureTheory.Measure.toBoxAdditive
{ι : Type u_1}
[Finite ι]
(μ : MeasureTheory.Measure (ι → ℝ))
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
If μ
is a locally finite measure on ℝⁿ
, then fun J ↦ (μ J).toReal
is a box-additive
function.
Equations
- MeasureTheory.Measure.toBoxAdditive μ = { toFun := fun (J : BoxIntegral.Box ι) => (↑↑μ ↑J).toReal, sum_partition_boxes' := ⋯ }
Instances For
theorem
BoxIntegral.Box.volume_apply
{ι : Type u_1}
[Fintype ι]
(I : BoxIntegral.Box ι)
:
(MeasureTheory.Measure.toBoxAdditive MeasureTheory.volume) I = Finset.prod Finset.univ fun (i : ι) => I.upper i - I.lower i
@[simp]
theorem
BoxIntegral.Box.volume_apply'
{ι : Type u_1}
[Fintype ι]
(I : BoxIntegral.Box ι)
:
(↑↑MeasureTheory.volume ↑I).toReal = Finset.prod Finset.univ fun (i : ι) => I.upper i - I.lower i
theorem
BoxIntegral.Box.volume_face_mul
{n : ℕ}
(i : Fin (n + 1))
(I : BoxIntegral.Box (Fin (n + 1)))
:
(Finset.prod Finset.univ fun (j : Fin n) => (BoxIntegral.Box.face I i).upper j - (BoxIntegral.Box.face I i).lower j) * (I.upper i - I.lower i) = Finset.prod Finset.univ fun (j : Fin (n + 1)) => I.upper j - I.lower j
def
BoxIntegral.BoxAdditiveMap.volume
{ι : Type u_1}
[Fintype ι]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
BoxIntegral.BoxAdditiveMap ι (E →L[ℝ] E) ⊤
Box-additive map sending each box I
to the continuous linear endomorphism
x ↦ (volume I).toReal • x
.
Equations
- BoxIntegral.BoxAdditiveMap.volume = BoxIntegral.BoxAdditiveMap.toSMul (MeasureTheory.Measure.toBoxAdditive MeasureTheory.volume)
Instances For
theorem
BoxIntegral.BoxAdditiveMap.volume_apply
{ι : Type u_1}
[Fintype ι]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(I : BoxIntegral.Box ι)
(x : E)
:
(BoxIntegral.BoxAdditiveMap.volume I) x = (Finset.prod Finset.univ fun (j : ι) => I.upper j - I.lower j) • x