Documentation

Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction

Induction on subboxes #

In this file we prove (see BoxIntegral.Box.exists_taggedPartition_isHenstock_isSubordinate_homothetic) that for every box I in ℝⁿ and a function r : ℝⁿ → ℝ positive on I there exists a tagged partition π of I such that

Later we will use this lemma to prove that the Henstock filter is nontrivial, hence the Henstock integral is well-defined.

Tags #

partition, tagged partition, Henstock integral

Split a box in ℝⁿ into 2 ^ n boxes by hyperplanes passing through its center.

Equations
Instances For
    theorem BoxIntegral.Prepartition.upper_sub_lower_of_mem_splitCenter {ι : Type u_1} [Fintype ι] {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} (h : J BoxIntegral.Prepartition.splitCenter I) (i : ι) :
    J.upper i - J.lower i = (I.upper i - I.lower i) / 2
    theorem BoxIntegral.Box.subbox_induction_on {ι : Type u_1} [Fintype ι] {p : BoxIntegral.Box ιProp} (I : BoxIntegral.Box ι) (H_ind : JI, (J'BoxIntegral.Prepartition.splitCenter J, p J')p J) (H_nhds : zBoxIntegral.Box.Icc I, ∃ U ∈ nhdsWithin z (BoxIntegral.Box.Icc I), JI, ∀ (m : ), z BoxIntegral.Box.Icc JBoxIntegral.Box.Icc J U(∀ (i : ι), J.upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m)p J) :
    p I

    Let p be a predicate on Box ι, let I be a box. Suppose that the following two properties hold true.

    • Consider a smaller box J ≤ I. The hyperplanes passing through the center of J split it into 2 ^ n boxes. If p holds true on each of these boxes, then it true on J.
    • For each z in the closed box I.Icc there exists a neighborhood U of z within I.Icc such that for every box J ≤ I such that z ∈ J.Icc ⊆ U, if J is homothetic to I with a coefficient of the form 1 / 2 ^ m, then p is true on J.

    Then p I is true. See also BoxIntegral.Box.subbox_induction_on' for a version using BoxIntegral.Box.splitCenterBox instead of BoxIntegral.Prepartition.splitCenter.

    Given a box I in ℝⁿ and a function r : ℝⁿ → (0, ∞), there exists a tagged partition π of I such that

    • π is a Henstock partition;
    • π is subordinate to r;
    • each box in π is homothetic to I with coefficient of the form 1 / 2 ^ m.

    This lemma implies that the Henstock filter is nontrivial, hence the Henstock integral is well-defined.

    Given a box I in ℝⁿ, a function r : ℝⁿ → (0, ∞), and a prepartition π of I, there exists a tagged prepartition π' of I such that

    • each box of π' is included in some box of π;
    • π' is a Henstock partition;
    • π' is subordinate to r;
    • π' covers exactly the same part of I as π;
    • the distortion of π' is equal to the distortion of π.

    Given a prepartition π of a box I and a function r : ℝⁿ → (0, ∞), π.toSubordinate r is a tagged partition π' such that

    • each box of π' is included in some box of π;
    • π' is a Henstock partition;
    • π' is subordinate to r;
    • π' covers exactly the same part of I as π;
    • the distortion of π' is equal to the distortion of π.
    Equations
    Instances For

      Given a tagged prepartition π₁, a prepartition π₂ that covers exactly I \ π₁.iUnion, and a function r : ℝⁿ → (0, ∞), returns the union of π₁ and π₂.toSubordinate r. This partition π has the following properties:

      • π is a partition, i.e. it covers the whole I;
      • π₁.boxes ⊆ π.boxes;
      • π.tag J = π₁.tag J whenever J ∈ π₁;
      • π is Henstock outside of π₁: π.tag J ∈ J.Icc whenever J ∈ π, J ∉ π₁;
      • π is subordinate to r outside of π₁;
      • the distortion of π is equal to the maximum of the distortions of π₁ and π₂.
      Equations
      Instances For