Inverse function theorem, 1D case #
In this file we prove a version of the inverse function theorem for maps f : ๐ โ ๐
.
We use ContinuousLinearEquiv.unitsEquivAut
to translate HasStrictDerivAt f f' a
and
f' โ 0
into HasStrictFDerivAt f (_ : ๐ โL[๐] ๐) a
.
@[reducible]
def
HasStrictDerivAt.localInverse
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
(f : ๐ โ ๐)
(f' : ๐)
(a : ๐)
(hf : HasStrictDerivAt f f' a)
(hf' : f' โ 0)
:
๐ โ ๐
A function that is inverse to f
near a
.
Equations
- HasStrictDerivAt.localInverse f f' a hf hf' = HasStrictFDerivAt.localInverse f ((ContinuousLinearEquiv.unitsEquivAut ๐) (Units.mk0 f' hf')) a โฏ
Instances For
theorem
HasStrictDerivAt.map_nhds_eq
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
{f : ๐ โ ๐}
{f' : ๐}
{a : ๐}
(hf : HasStrictDerivAt f f' a)
(hf' : f' โ 0)
:
Filter.map f (nhds a) = nhds (f a)
theorem
HasStrictDerivAt.to_localInverse
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
{f : ๐ โ ๐}
{f' : ๐}
{a : ๐}
(hf : HasStrictDerivAt f f' a)
(hf' : f' โ 0)
:
HasStrictDerivAt (HasStrictDerivAt.localInverse f f' a hf hf') f'โปยน (f a)
theorem
HasStrictDerivAt.to_local_left_inverse
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
{f : ๐ โ ๐}
{f' : ๐}
{a : ๐}
(hf : HasStrictDerivAt f f' a)
(hf' : f' โ 0)
{g : ๐ โ ๐}
(hg : โแถ (x : ๐) in nhds a, g (f x) = x)
:
HasStrictDerivAt g f'โปยน (f a)
theorem
isOpenMap_of_hasStrictDerivAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
{f : ๐ โ ๐}
{f' : ๐ โ ๐}
(hf : โ (x : ๐), HasStrictDerivAt f (f' x) x)
(h0 : โ (x : ๐), f' x โ 0)
:
If a function has a non-zero strict derivative at all points, then it is an open map.
@[deprecated isOpenMap_of_hasStrictDerivAt]
theorem
open_map_of_strict_deriv
{๐ : Type u_1}
[NontriviallyNormedField ๐]
[CompleteSpace ๐]
{f : ๐ โ ๐}
{f' : ๐ โ ๐}
(hf : โ (x : ๐), HasStrictDerivAt f (f' x) x)
(h0 : โ (x : ๐), f' x โ 0)
:
Alias of isOpenMap_of_hasStrictDerivAt
.
If a function has a non-zero strict derivative at all points, then it is an open map.