Documentation

Mathlib.Analysis.Normed.Group.Seminorm

Group seminorms #

This file defines norms and seminorms in a group. A group seminorm is a function to the reals which is positive-semidefinite and subadditive. A norm further only maps zero to zero.

Main declarations #

Notes #

The corresponding hom classes are defined in Analysis.Order.Hom.Basic to be used by absolute values.

We do not define NonarchAddGroupSeminorm as an extension of AddGroupSeminorm to avoid having a superfluous add_le' field in the resulting structure. The same applies to NonarchAddGroupNorm.

References #

Tags #

norm, seminorm

structure AddGroupSeminorm (G : Type u_7) [AddGroup G] :
Type u_7

A seminorm on an additive group G is a function f : G → ℝ that preserves zero, is subadditive and such that f (-x) = f x for all x.

  • toFun : G

    The bare function of an AddGroupSeminorm.

  • map_zero' : self.toFun 0 = 0

    The image of zero is zero.

  • add_le' : ∀ (r s : G), self.toFun (r + s) self.toFun r + self.toFun s

    The seminorm is subadditive.

  • neg' : ∀ (r : G), self.toFun (-r) = self.toFun r

    The seminorm is invariant under negation.

Instances For
structure GroupSeminorm (G : Type u_7) [Group G] :
Type u_7

A seminorm on a group G is a function f : G → ℝ that sends one to zero, is submultiplicative and such that f x⁻¹ = f x for all x.

  • toFun : G

    The bare function of a GroupSeminorm.

  • map_one' : self.toFun 1 = 0

    The image of one is zero.

  • mul_le' : ∀ (x y : G), self.toFun (x * y) self.toFun x + self.toFun y

    The seminorm applied to a product is dominated by the sum of the seminorm applied to the factors.

  • inv' : ∀ (x : G), self.toFun x⁻¹ = self.toFun x

    The seminorm is invariant under inversion.

Instances For
structure NonarchAddGroupSeminorm (G : Type u_7) [AddGroup G] extends ZeroHom :
Type u_7

A nonarchimedean seminorm on an additive group G is a function f : G → ℝ that preserves zero, is nonarchimedean and such that f (-x) = f x for all x.

  • toFun : G
  • map_zero' : self.toFun 0 = 0
  • add_le_max' : ∀ (r s : G), self.toFun (r + s) max (self.toFun r) (self.toFun s)

    The seminorm applied to a sum is dominated by the maximum of the function applied to the addends.

  • neg' : ∀ (r : G), self.toFun (-r) = self.toFun r

    The seminorm is invariant under negation.

Instances For

NOTE: We do not define NonarchAddGroupSeminorm as an extension of AddGroupSeminorm to avoid having a superfluous add_le' field in the resulting structure. The same applies to NonarchAddGroupNorm below.

structure AddGroupNorm (G : Type u_7) [AddGroup G] extends AddGroupSeminorm :
Type u_7

A norm on an additive group G is a function f : G → ℝ that preserves zero, is subadditive and such that f (-x) = f x and f x = 0 → x = 0 for all x.

  • toFun : G
  • map_zero' : self.toFun 0 = 0
  • add_le' : ∀ (r s : G), self.toFun (r + s) self.toFun r + self.toFun s
  • neg' : ∀ (r : G), self.toFun (-r) = self.toFun r
  • eq_zero_of_map_eq_zero' : ∀ (x : G), self.toFun x = 0x = 0

    If the image under the seminorm is zero, then the argument is zero.

Instances For
structure GroupNorm (G : Type u_7) [Group G] extends GroupSeminorm :
Type u_7

A seminorm on a group G is a function f : G → ℝ that sends one to zero, is submultiplicative and such that f x⁻¹ = f x and f x = 0 → x = 1 for all x.

  • toFun : G
  • map_one' : self.toFun 1 = 0
  • mul_le' : ∀ (x y : G), self.toFun (x * y) self.toFun x + self.toFun y
  • inv' : ∀ (x : G), self.toFun x⁻¹ = self.toFun x
  • eq_one_of_map_eq_zero' : ∀ (x : G), self.toFun x = 0x = 1

    If the image under the norm is zero, then the argument is one.

Instances For
structure NonarchAddGroupNorm (G : Type u_7) [AddGroup G] extends NonarchAddGroupSeminorm :
Type u_7

A nonarchimedean norm on an additive group G is a function f : G → ℝ that preserves zero, is nonarchimedean and such that f (-x) = f x and f x = 0 → x = 0 for all x.

  • toFun : G
  • map_zero' : self.toFun 0 = 0
  • add_le_max' : ∀ (r s : G), self.toFun (r + s) max (self.toFun r) (self.toFun s)
  • neg' : ∀ (r : G), self.toFun (-r) = self.toFun r
  • eq_zero_of_map_eq_zero' : ∀ (x : G), self.toFun x = 0x = 0

    If the image under the norm is zero, then the argument is zero.

Instances For

NonarchAddGroupSeminormClass F α states that F is a type of nonarchimedean seminorms on the additive group α.

You should extend this class when you extend NonarchAddGroupSeminorm.

  • map_add_le_max : ∀ (f : F) (a b : α), f (a + b) max (f a) (f b)
  • map_zero : ∀ (f : F), f 0 = 0

    The image of zero is zero.

  • map_neg_eq_map' : ∀ (f : F) (a : α), f (-a) = f a

    The seminorm is invariant under negation.

Instances

NonarchAddGroupNormClass F α states that F is a type of nonarchimedean norms on the additive group α.

You should extend this class when you extend NonarchAddGroupNorm.

  • map_add_le_max : ∀ (f : F) (a b : α), f (a + b) max (f a) (f b)
  • map_zero : ∀ (f : F), f 0 = 0
  • map_neg_eq_map' : ∀ (f : F) (a : α), f (-a) = f a
  • eq_zero_of_map_eq_zero : ∀ (f : F) {a : α}, f a = 0a = 0

    If the image under the norm is zero, then the argument is zero.

Instances
theorem map_sub_le_max {E : Type u_4} {F : Type u_5} [AddGroup E] [FunLike F E ] [NonarchAddGroupSeminormClass F E] (f : F) (x : E) (y : E) :
f (x - y) max (f x) (f y)

Seminorms #

theorem AddGroupSeminorm.funLike.proof_1 {E : Type u_1} [AddGroup E] (f : AddGroupSeminorm E) (g : AddGroupSeminorm E) (h : (fun (f : AddGroupSeminorm E) => f.toFun) f = (fun (f : AddGroupSeminorm E) => f.toFun) g) :
f = g
Equations
  • AddGroupSeminorm.funLike = { coe := fun (f : AddGroupSeminorm E) => f.toFun, coe_injective' := }
Equations
  • GroupSeminorm.funLike = { coe := fun (f : GroupSeminorm E) => f.toFun, coe_injective' := }

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

Equations
  • AddGroupSeminorm.instCoeFunAddGroupSeminormForAllReal = { coe := DFunLike.coe }

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

Equations
  • GroupSeminorm.instCoeFunGroupSeminormForAllReal = { coe := DFunLike.coe }
@[simp]
theorem AddGroupSeminorm.toFun_eq_coe {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} :
p.toFun = p
@[simp]
theorem GroupSeminorm.toFun_eq_coe {E : Type u_4} [Group E] {p : GroupSeminorm E} :
p.toFun = p
theorem AddGroupSeminorm.ext {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} :
(∀ (x : E), p x = q x)p = q
theorem GroupSeminorm.ext {E : Type u_4} [Group E] {p : GroupSeminorm E} {q : GroupSeminorm E} :
(∀ (x : E), p x = q x)p = q
Equations
Equations
theorem AddGroupSeminorm.le_def {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} :
p q p q
theorem GroupSeminorm.le_def {E : Type u_4} [Group E] {p : GroupSeminorm E} {q : GroupSeminorm E} :
p q p q
theorem AddGroupSeminorm.lt_def {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} :
p < q p < q
theorem GroupSeminorm.lt_def {E : Type u_4} [Group E] {p : GroupSeminorm E} {q : GroupSeminorm E} :
p < q p < q
@[simp]
theorem AddGroupSeminorm.coe_le_coe {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} :
p q p q
@[simp]
theorem GroupSeminorm.coe_le_coe {E : Type u_4} [Group E] {p : GroupSeminorm E} {q : GroupSeminorm E} :
p q p q
@[simp]
theorem AddGroupSeminorm.coe_lt_coe {E : Type u_4} [AddGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} :
p < q p < q
@[simp]
theorem GroupSeminorm.coe_lt_coe {E : Type u_4} [Group E] {p : GroupSeminorm E} {q : GroupSeminorm E} :
p < q p < q
Equations
  • AddGroupSeminorm.instZeroAddGroupSeminorm = { zero := { toFun := 0, map_zero' := , add_le' := , neg' := } }
theorem AddGroupSeminorm.instZeroAddGroupSeminorm.proof_2 {E : Type u_1} [AddGroup E] :
∀ (x x_1 : E), 0 (x + x_1) 0 + 0 (x + x_1)
theorem AddGroupSeminorm.instZeroAddGroupSeminorm.proof_3 {E : Type u_1} [AddGroup E] :
∀ (x : E), 0 (-x) = 0 (-x)
Equations
  • GroupSeminorm.instZeroGroupSeminorm = { zero := { toFun := 0, map_one' := , mul_le' := , inv' := } }
@[simp]
theorem AddGroupSeminorm.coe_zero {E : Type u_4} [AddGroup E] :
0 = 0
@[simp]
theorem GroupSeminorm.coe_zero {E : Type u_4} [Group E] :
0 = 0
@[simp]
theorem AddGroupSeminorm.zero_apply {E : Type u_4} [AddGroup E] (x : E) :
0 x = 0
@[simp]
theorem GroupSeminorm.zero_apply {E : Type u_4} [Group E] (x : E) :
0 x = 0
Equations
  • AddGroupSeminorm.instInhabitedAddGroupSeminorm = { default := 0 }
Equations
  • GroupSeminorm.instInhabitedGroupSeminorm = { default := 0 }
theorem AddGroupSeminorm.instAddAddGroupSeminorm.proof_1 {E : Type u_1} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) :
(fun (x : E) => p x + q x) 0 = 0
theorem AddGroupSeminorm.instAddAddGroupSeminorm.proof_3 {E : Type u_1} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
(fun (x : E) => p x + q x) (-x) = (fun (x : E) => p x + q x) x
theorem AddGroupSeminorm.instAddAddGroupSeminorm.proof_2 {E : Type u_1} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) :
∀ (x x_1 : E), p (x + x_1) + q (x + x_1) (fun (x : E) => p x + q x) x + (fun (x : E) => p x + q x) x_1
Equations
  • AddGroupSeminorm.instAddAddGroupSeminorm = { add := fun (p q : AddGroupSeminorm E) => { toFun := fun (x : E) => p x + q x, map_zero' := , add_le' := , neg' := } }
Equations
  • GroupSeminorm.instAddGroupSeminorm = { add := fun (p q : GroupSeminorm E) => { toFun := fun (x : E) => p x + q x, map_one' := , mul_le' := , inv' := } }
@[simp]
theorem AddGroupSeminorm.coe_add {E : Type u_4} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) :
(p + q) = p + q
@[simp]
theorem GroupSeminorm.coe_add {E : Type u_4} [Group E] (p : GroupSeminorm E) (q : GroupSeminorm E) :
(p + q) = p + q
@[simp]
theorem AddGroupSeminorm.add_apply {E : Type u_4} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
(p + q) x = p x + q x
@[simp]
theorem GroupSeminorm.add_apply {E : Type u_4} [Group E] (p : GroupSeminorm E) (q : GroupSeminorm E) (x : E) :
(p + q) x = p x + q x
theorem AddGroupSeminorm.instSupAddGroupSeminorm.proof_2 {E : Type u_1} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) (y : E) :
p (x + y) q (x + y) (p q) x + (p q) y
theorem AddGroupSeminorm.instSupAddGroupSeminorm.proof_3 {E : Type u_1} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
(p q) (-x) = (p q) x
Equations
  • AddGroupSeminorm.instSupAddGroupSeminorm = { sup := fun (p q : AddGroupSeminorm E) => { toFun := p q, map_zero' := , add_le' := , neg' := } }
Equations
  • GroupSeminorm.instSupGroupSeminorm = { sup := fun (p q : GroupSeminorm E) => { toFun := p q, map_one' := , mul_le' := , inv' := } }
@[simp]
theorem AddGroupSeminorm.coe_sup {E : Type u_4} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) :
(p q) = p q
@[simp]
theorem GroupSeminorm.coe_sup {E : Type u_4} [Group E] (p : GroupSeminorm E) (q : GroupSeminorm E) :
(p q) = p q
@[simp]
theorem AddGroupSeminorm.sup_apply {E : Type u_4} [AddGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
(p q) x = p x q x
@[simp]
theorem GroupSeminorm.sup_apply {E : Type u_4} [Group E] (p : GroupSeminorm E) (q : GroupSeminorm E) (x : E) :
(p q) x = p x q x
Equations
Equations
def AddGroupSeminorm.comp {E : Type u_4} {F : Type u_5} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) :

Composition of an additive group seminorm with an additive monoid homomorphism as an additive group seminorm.

Equations
  • AddGroupSeminorm.comp p f = { toFun := fun (x : F) => p (f x), map_zero' := , add_le' := , neg' := }
theorem AddGroupSeminorm.comp.proof_3 {E : Type u_1} {F : Type u_2} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) (x : F) :
(fun (x : F) => p (f x)) (-x) = (fun (x : F) => p (f x)) x
theorem AddGroupSeminorm.comp.proof_2 {E : Type u_1} {F : Type u_2} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) :
∀ (x x_1 : F), p (f (x + x_1)) (fun (x : F) => p (f x)) x + (fun (x : F) => p (f x)) x_1
theorem AddGroupSeminorm.comp.proof_1 {E : Type u_1} {F : Type u_2} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) :
(fun (x : F) => p (f x)) 0 = 0
def GroupSeminorm.comp {E : Type u_4} {F : Type u_5} [Group E] [Group F] (p : GroupSeminorm E) (f : F →* E) :

Composition of a group seminorm with a monoid homomorphism as a group seminorm.

Equations
  • GroupSeminorm.comp p f = { toFun := fun (x : F) => p (f x), map_one' := , mul_le' := , inv' := }
@[simp]
theorem AddGroupSeminorm.coe_comp {E : Type u_4} {F : Type u_5} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) :
(AddGroupSeminorm.comp p f) = p f
@[simp]
theorem GroupSeminorm.coe_comp {E : Type u_4} {F : Type u_5} [Group E] [Group F] (p : GroupSeminorm E) (f : F →* E) :
(GroupSeminorm.comp p f) = p f
@[simp]
theorem AddGroupSeminorm.comp_apply {E : Type u_4} {F : Type u_5} [AddGroup E] [AddGroup F] (p : AddGroupSeminorm E) (f : F →+ E) (x : F) :
(AddGroupSeminorm.comp p f) x = p (f x)
@[simp]
theorem GroupSeminorm.comp_apply {E : Type u_4} {F : Type u_5} [Group E] [Group F] (p : GroupSeminorm E) (f : F →* E) (x : F) :
(GroupSeminorm.comp p f) x = p (f x)
@[simp]
@[simp]
theorem GroupSeminorm.comp_zero {E : Type u_4} {F : Type u_5} [Group E] [Group F] (p : GroupSeminorm E) :
@[simp]
theorem AddGroupSeminorm.zero_comp {E : Type u_4} {F : Type u_5} [AddGroup E] [AddGroup F] (f : F →+ E) :
@[simp]
theorem GroupSeminorm.zero_comp {E : Type u_4} {F : Type u_5} [Group E] [Group F] (f : F →* E) :
theorem GroupSeminorm.comp_assoc {E : Type u_4} {F : Type u_5} {G : Type u_6} [Group E] [Group F] [Group G] (p : GroupSeminorm E) (g : F →* E) (f : G →* F) :
theorem GroupSeminorm.add_comp {E : Type u_4} {F : Type u_5} [Group E] [Group F] (p : GroupSeminorm E) (q : GroupSeminorm E) (f : F →* E) :
theorem GroupSeminorm.comp_mono {E : Type u_4} {F : Type u_5} [Group E] [Group F] {p : GroupSeminorm E} {q : GroupSeminorm E} (f : F →* E) (hp : p q) :
theorem GroupSeminorm.comp_mul_le {E : Type u_4} {F : Type u_5} [CommGroup E] [CommGroup F] (p : GroupSeminorm E) (f : F →* E) (g : F →* E) :
theorem AddGroupSeminorm.add_bddBelow_range_add {E : Type u_4} [AddCommGroup E] {p : AddGroupSeminorm E} {q : AddGroupSeminorm E} {x : E} :
BddBelow (Set.range fun (y : E) => p y + q (x - y))
theorem GroupSeminorm.mul_bddBelow_range_add {E : Type u_4} [CommGroup E] {p : GroupSeminorm E} {q : GroupSeminorm E} {x : E} :
BddBelow (Set.range fun (y : E) => p y + q (x / y))
Equations
  • One or more equations did not get rendered due to their size.
theorem AddGroupSeminorm.instInfAddGroupSeminormToAddGroup.proof_2 {E : Type u_1} [AddCommGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) (y : E) :
(fun (x : E) => ⨅ (y : E), p y + q (x - y)) (x + y) (⨅ (y : E), p y + q (x - y)) + ⨅ (y_1 : E), p y_1 + q (y - y_1)
theorem AddGroupSeminorm.instInfAddGroupSeminormToAddGroup.proof_3 {E : Type u_1} [AddCommGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
⨅ (y : E), p y + q (-x - y) = (fun (x : E) => ⨅ (y : E), p y + q (x - y)) x
Equations
  • GroupSeminorm.instInfGroupSeminormToGroup = { inf := fun (p q : GroupSeminorm E) => { toFun := fun (x : E) => ⨅ (y : E), p y + q (x / y), map_one' := , mul_le' := , inv' := } }
@[simp]
theorem AddGroupSeminorm.inf_apply {E : Type u_4} [AddCommGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
(p q) x = ⨅ (y : E), p y + q (x - y)
@[simp]
theorem GroupSeminorm.inf_apply {E : Type u_4} [CommGroup E] (p : GroupSeminorm E) (q : GroupSeminorm E) (x : E) :
(p q) x = ⨅ (y : E), p y + q (x / y)
Equations
  • AddGroupSeminorm.instLatticeAddGroupSeminormToAddGroup = let __src := AddGroupSeminorm.semilatticeSup; Lattice.mk
theorem AddGroupSeminorm.instLatticeAddGroupSeminormToAddGroup.proof_3 {E : Type u_1} [AddCommGroup E] (a : AddGroupSeminorm E) (b : AddGroupSeminorm E) (c : AddGroupSeminorm E) (hb : a b) (hc : a c) (x : E) :
(fun (f : AddGroupSeminorm E) => f) a x ⨅ (y : E), b y + c (x - y)
theorem AddGroupSeminorm.instLatticeAddGroupSeminormToAddGroup.proof_2 {E : Type u_1} [AddCommGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
⨅ (y : E), p y + q (x - y) (fun (f : AddGroupSeminorm E) => f) q x
theorem AddGroupSeminorm.instLatticeAddGroupSeminormToAddGroup.proof_1 {E : Type u_1} [AddCommGroup E] (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) (x : E) :
⨅ (y : E), p y + q (x - y) (fun (f : AddGroupSeminorm E) => f) p x
Equations
  • GroupSeminorm.instLatticeGroupSeminormToGroup = let __src := GroupSeminorm.semilatticeSup; Lattice.mk
Equations
  • AddGroupSeminorm.toOne = { one := { toFun := fun (x : E) => if x = 0 then 0 else 1, map_zero' := , add_le' := , neg' := } }
@[simp]
theorem AddGroupSeminorm.apply_one {E : Type u_4} [AddGroup E] [DecidableEq E] (x : E) :
1 x = if x = 0 then 0 else 1

Any action on which factors through ℝ≥0 applies to an AddGroupSeminorm.

Equations
  • AddGroupSeminorm.toSMul = { smul := fun (r : R) (p : AddGroupSeminorm E) => { toFun := fun (x : E) => r p x, map_zero' := , add_le' := , neg' := } }
@[simp]
theorem AddGroupSeminorm.coe_smul {R : Type u_2} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : AddGroupSeminorm E) :
(r p) = r p
@[simp]
theorem AddGroupSeminorm.smul_apply {R : Type u_2} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : AddGroupSeminorm E) (x : E) :
(r p) x = r p x
instance AddGroupSeminorm.isScalarTower {R : Type u_2} {R' : Type u_3} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] [SMul R' ] [SMul R' NNReal] [IsScalarTower R' NNReal ] [SMul R R'] [IsScalarTower R R' ] :
Equations
  • =
theorem AddGroupSeminorm.smul_sup {R : Type u_2} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : AddGroupSeminorm E) (q : AddGroupSeminorm E) :
r (p q) = r p r q
Equations

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

Equations
  • NonarchAddGroupSeminorm.instCoeFunNonarchAddGroupSeminormForAllReal = { coe := DFunLike.coe }
@[simp]
theorem NonarchAddGroupSeminorm.toZeroHom_eq_coe {E : Type u_4} [AddGroup E] {p : NonarchAddGroupSeminorm E} :
p.toZeroHom = p
theorem NonarchAddGroupSeminorm.ext {E : Type u_4} [AddGroup E] {p : NonarchAddGroupSeminorm E} {q : NonarchAddGroupSeminorm E} :
(∀ (x : E), p x = q x)p = q
Equations
Equations
  • NonarchAddGroupSeminorm.instZeroNonarchAddGroupSeminorm = { zero := { toZeroHom := { toFun := 0, map_zero' := }, add_le_max' := , neg' := } }
@[simp]
theorem NonarchAddGroupSeminorm.coe_zero {E : Type u_4} [AddGroup E] :
0 = 0
@[simp]
theorem NonarchAddGroupSeminorm.zero_apply {E : Type u_4} [AddGroup E] (x : E) :
0 x = 0
Equations
  • NonarchAddGroupSeminorm.instInhabitedNonarchAddGroupSeminorm = { default := 0 }
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonarchAddGroupSeminorm.coe_sup {E : Type u_4} [AddGroup E] (p : NonarchAddGroupSeminorm E) (q : NonarchAddGroupSeminorm E) :
(p q) = p q
@[simp]
theorem NonarchAddGroupSeminorm.sup_apply {E : Type u_4} [AddGroup E] (p : NonarchAddGroupSeminorm E) (q : NonarchAddGroupSeminorm E) (x : E) :
(p q) x = p x q x
Equations
instance GroupSeminorm.toOne {E : Type u_4} [Group E] [DecidableEq E] :
Equations
  • GroupSeminorm.toOne = { one := { toFun := fun (x : E) => if x = 1 then 0 else 1, map_one' := , mul_le' := , inv' := } }
@[simp]
theorem GroupSeminorm.apply_one {E : Type u_4} [Group E] [DecidableEq E] (x : E) :
1 x = if x = 1 then 0 else 1

Any action on which factors through ℝ≥0 applies to an AddGroupSeminorm.

Equations
  • GroupSeminorm.instSMulGroupSeminorm = { smul := fun (r : R) (p : GroupSeminorm E) => { toFun := fun (x : E) => r p x, map_one' := , mul_le' := , inv' := } }
@[simp]
theorem GroupSeminorm.coe_smul {R : Type u_2} {E : Type u_4} [Group E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : GroupSeminorm E) :
(r p) = r p
@[simp]
theorem GroupSeminorm.smul_apply {R : Type u_2} {E : Type u_4} [Group E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : GroupSeminorm E) (x : E) :
(r p) x = r p x
theorem GroupSeminorm.smul_sup {R : Type u_2} {E : Type u_4} [Group E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : GroupSeminorm E) (q : GroupSeminorm E) :
r (p q) = r p r q
Equations
  • NonarchAddGroupSeminorm.instOneNonarchAddGroupSeminorm = { one := { toZeroHom := { toFun := fun (x : E) => if x = 0 then 0 else 1, map_zero' := }, add_le_max' := , neg' := } }
@[simp]
theorem NonarchAddGroupSeminorm.apply_one {E : Type u_4} [AddGroup E] [DecidableEq E] (x : E) :
1 x = if x = 0 then 0 else 1

Any action on which factors through ℝ≥0 applies to a NonarchAddGroupSeminorm.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonarchAddGroupSeminorm.coe_smul {R : Type u_2} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : NonarchAddGroupSeminorm E) :
(r p) = r p
@[simp]
theorem NonarchAddGroupSeminorm.smul_apply {R : Type u_2} {E : Type u_4} [AddGroup E] [SMul R ] [SMul R NNReal] [IsScalarTower R NNReal ] (r : R) (p : NonarchAddGroupSeminorm E) (x : E) :
(r p) x = r p x

Norms #

theorem AddGroupNorm.funLike.proof_1 {E : Type u_1} [AddGroup E] (f : AddGroupNorm E) (g : AddGroupNorm E) (h : (fun (f : AddGroupNorm E) => f.toFun) f = (fun (f : AddGroupNorm E) => f.toFun) g) :
f = g
Equations
  • AddGroupNorm.funLike = { coe := fun (f : AddGroupNorm E) => f.toFun, coe_injective' := }
instance GroupNorm.funLike {E : Type u_4} [Group E] :
Equations
  • GroupNorm.funLike = { coe := fun (f : GroupNorm E) => f.toFun, coe_injective' := }
Equations
  • =

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun directly.

Equations
  • AddGroupNorm.instCoeFunAddGroupNormForAllReal = DFunLike.hasCoeToFun
instance GroupNorm.instCoeFunGroupNormForAllReal {E : Type u_4} [Group E] :
CoeFun (GroupNorm E) fun (x : GroupNorm E) => E

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun directly.

Equations
  • GroupNorm.instCoeFunGroupNormForAllReal = DFunLike.hasCoeToFun
@[simp]
theorem AddGroupNorm.toAddGroupSeminorm_eq_coe {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} :
p.toAddGroupSeminorm = p
@[simp]
theorem GroupNorm.toGroupSeminorm_eq_coe {E : Type u_4} [Group E] {p : GroupNorm E} :
p.toGroupSeminorm = p
theorem AddGroupNorm.ext {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} {q : AddGroupNorm E} :
(∀ (x : E), p x = q x)p = q
theorem GroupNorm.ext {E : Type u_4} [Group E] {p : GroupNorm E} {q : GroupNorm E} :
(∀ (x : E), p x = q x)p = q
Equations
Equations
theorem AddGroupNorm.le_def {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} {q : AddGroupNorm E} :
p q p q
theorem GroupNorm.le_def {E : Type u_4} [Group E] {p : GroupNorm E} {q : GroupNorm E} :
p q p q
theorem AddGroupNorm.lt_def {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} {q : AddGroupNorm E} :
p < q p < q
theorem GroupNorm.lt_def {E : Type u_4} [Group E] {p : GroupNorm E} {q : GroupNorm E} :
p < q p < q
@[simp]
theorem AddGroupNorm.coe_le_coe {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} {q : AddGroupNorm E} :
p q p q
@[simp]
theorem GroupNorm.coe_le_coe {E : Type u_4} [Group E] {p : GroupNorm E} {q : GroupNorm E} :
p q p q
@[simp]
theorem AddGroupNorm.coe_lt_coe {E : Type u_4} [AddGroup E] {p : AddGroupNorm E} {q : AddGroupNorm E} :
p < q p < q
@[simp]
theorem GroupNorm.coe_lt_coe {E : Type u_4} [Group E] {p : GroupNorm E} {q : GroupNorm E} :
p < q p < q
theorem AddGroupNorm.instAddAddGroupNorm.proof_1 {E : Type u_1} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) (_x : E) (hx : (p.toAddGroupSeminorm + q.toAddGroupSeminorm).toFun _x = 0) :
_x = 0
Equations
  • One or more equations did not get rendered due to their size.
instance GroupNorm.instAddGroupNorm {E : Type u_4} [Group E] :
Equations
  • GroupNorm.instAddGroupNorm = { add := fun (p q : GroupNorm E) => let __src := p.toGroupSeminorm + q.toGroupSeminorm; { toGroupSeminorm := __src, eq_one_of_map_eq_zero' := } }
@[simp]
theorem AddGroupNorm.coe_add {E : Type u_4} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) :
(p + q) = p + q
@[simp]
theorem GroupNorm.coe_add {E : Type u_4} [Group E] (p : GroupNorm E) (q : GroupNorm E) :
(p + q) = p + q
@[simp]
theorem AddGroupNorm.add_apply {E : Type u_4} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) (x : E) :
(p + q) x = p x + q x
@[simp]
theorem GroupNorm.add_apply {E : Type u_4} [Group E] (p : GroupNorm E) (q : GroupNorm E) (x : E) :
(p + q) x = p x + q x
Equations
  • One or more equations did not get rendered due to their size.
theorem AddGroupNorm.instSupAddGroupNorm.proof_1 {E : Type u_1} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) (_x : E) (hx : (p.toAddGroupSeminorm q.toAddGroupSeminorm).toFun _x = 0) :
_x = 0
instance GroupNorm.instSupGroupNorm {E : Type u_4} [Group E] :
Equations
  • GroupNorm.instSupGroupNorm = { sup := fun (p q : GroupNorm E) => let __src := p.toGroupSeminorm q.toGroupSeminorm; { toGroupSeminorm := __src, eq_one_of_map_eq_zero' := } }
@[simp]
theorem AddGroupNorm.coe_sup {E : Type u_4} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) :
(p q) = p q
@[simp]
theorem GroupNorm.coe_sup {E : Type u_4} [Group E] (p : GroupNorm E) (q : GroupNorm E) :
(p q) = p q
@[simp]
theorem AddGroupNorm.sup_apply {E : Type u_4} [AddGroup E] (p : AddGroupNorm E) (q : AddGroupNorm E) (x : E) :
(p q) x = p x q x
@[simp]
theorem GroupNorm.sup_apply {E : Type u_4} [Group E] (p : GroupNorm E) (q : GroupNorm E) (x : E) :
(p q) x = p x q x
Equations
Equations
Equations
  • AddGroupNorm.instOneAddGroupNorm = { one := let __src := 1; { toAddGroupSeminorm := __src, eq_zero_of_map_eq_zero' := } }
@[simp]
theorem AddGroupNorm.apply_one {E : Type u_4} [AddGroup E] [DecidableEq E] (x : E) :
1 x = if x = 0 then 0 else 1
Equations
  • AddGroupNorm.instInhabitedAddGroupNorm = { default := 1 }
Equations
  • AddGroupNorm.toOne = { one := let __src := 1; { toAddGroupSeminorm := __src, eq_zero_of_map_eq_zero' := } }
instance GroupNorm.toOne {E : Type u_4} [Group E] [DecidableEq E] :
Equations
  • GroupNorm.toOne = { one := let __src := 1; { toGroupSeminorm := __src, eq_one_of_map_eq_zero' := } }
@[simp]
theorem GroupNorm.apply_one {E : Type u_4} [Group E] [DecidableEq E] (x : E) :
1 x = if x = 1 then 0 else 1
Equations
  • GroupNorm.instInhabitedGroupNorm = { default := 1 }
Equations
  • NonarchAddGroupNorm.funLike = { coe := fun (f : NonarchAddGroupNorm E) => f.toFun, coe_injective' := }

Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

Equations
  • NonarchAddGroupNorm.instCoeFunNonarchAddGroupNormForAllReal = DFunLike.hasCoeToFun
@[simp]
theorem NonarchAddGroupNorm.toNonarchAddGroupSeminorm_eq_coe {E : Type u_4} [AddGroup E] {p : NonarchAddGroupNorm E} :
p.toNonarchAddGroupSeminorm = p
theorem NonarchAddGroupNorm.ext {E : Type u_4} [AddGroup E] {p : NonarchAddGroupNorm E} {q : NonarchAddGroupNorm E} :
(∀ (x : E), p x = q x)p = q
Equations
theorem NonarchAddGroupNorm.lt_def {E : Type u_4} [AddGroup E] {p : NonarchAddGroupNorm E} {q : NonarchAddGroupNorm E} :
p < q p < q
@[simp]
theorem NonarchAddGroupNorm.coe_le_coe {E : Type u_4} [AddGroup E] {p : NonarchAddGroupNorm E} {q : NonarchAddGroupNorm E} :
p q p q
@[simp]
theorem NonarchAddGroupNorm.coe_lt_coe {E : Type u_4} [AddGroup E] {p : NonarchAddGroupNorm E} {q : NonarchAddGroupNorm E} :
p < q p < q
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonarchAddGroupNorm.coe_sup {E : Type u_4} [AddGroup E] (p : NonarchAddGroupNorm E) (q : NonarchAddGroupNorm E) :
(p q) = p q
@[simp]
theorem NonarchAddGroupNorm.sup_apply {E : Type u_4} [AddGroup E] (p : NonarchAddGroupNorm E) (q : NonarchAddGroupNorm E) (x : E) :
(p q) x = p x q x
Equations
Equations
  • NonarchAddGroupNorm.instOneNonarchAddGroupNorm = { one := let __src := 1; { toNonarchAddGroupSeminorm := __src, eq_zero_of_map_eq_zero' := } }
@[simp]
theorem NonarchAddGroupNorm.apply_one {E : Type u_4} [AddGroup E] [DecidableEq E] (x : E) :
1 x = if x = 0 then 0 else 1
Equations
  • NonarchAddGroupNorm.instInhabitedNonarchAddGroupNorm = { default := 1 }