Indicator function and norm #
This file contains a few simple lemmas about Set.indicator
and norm
.
Tags #
indicator, norm
theorem
norm_indicator_eq_indicator_norm
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
{s : Set α}
(f : α → E)
(a : α)
:
‖Set.indicator s f a‖ = Set.indicator s (fun (a : α) => ‖f a‖) a
theorem
nnnorm_indicator_eq_indicator_nnnorm
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
{s : Set α}
(f : α → E)
(a : α)
:
‖Set.indicator s f a‖₊ = Set.indicator s (fun (a : α) => ‖f a‖₊) a
theorem
norm_indicator_le_of_subset
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
{s : Set α}
{t : Set α}
(h : s ⊆ t)
(f : α → E)
(a : α)
:
‖Set.indicator s f a‖ ≤ ‖Set.indicator t f a‖
theorem
indicator_norm_le_norm_self
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
{s : Set α}
(f : α → E)
(a : α)
:
theorem
norm_indicator_le_norm_self
{α : Type u_1}
{E : Type u_2}
[SeminormedAddCommGroup E]
{s : Set α}
(f : α → E)
(a : α)
: