Homeomorphism between a normed space and sphere times (0, +∞)
#
In this file we define a homeomorphism between nonzero elements of a normed space E
and Metric.sphere (0 : E) 1 × Set.Ioi (0 : ℝ)
.
One may think about it as generalization of polar coordinates to any normed space.
@[simp]
theorem
homeomorphUnitSphereProd_apply_fst_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑{0}ᶜ)
:
@[simp]
theorem
homeomorphUnitSphereProd_symm_apply_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑(Metric.sphere 0 1) × ↑(Set.Ioi 0))
:
↑((Homeomorph.symm (homeomorphUnitSphereProd E)) x) = ↑x.2 • ↑x.1
@[simp]
theorem
homeomorphUnitSphereProd_apply_snd_coe
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(x : ↑{0}ᶜ)
:
↑((homeomorphUnitSphereProd E) x).2 = ‖↑x‖
noncomputable def
homeomorphUnitSphereProd
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
:
↑{0}ᶜ ≃ₜ ↑(Metric.sphere 0 1) × ↑(Set.Ioi 0)
The natural homeomorphism between nonzero elements of a normed space E
and Metric.sphere (0 : E) 1 × Set.Ioi (0 : ℝ)
.
The forward map sends ⟨x, hx⟩
to ⟨‖x‖⁻¹ • x, ‖x‖⟩
,
the inverse map sends (x, r)
to r • x
.
One may think about it as generalization of polar coordinates to any normed space.
Equations
- One or more equations did not get rendered due to their size.