Maps on the unit circle #
In this file we prove some basic lemmas about expMapCircle
and the restriction of Complex.arg
to the unit circle. These two maps define a partial equivalence between circle
and ℝ
, see
circle.argPartialEquiv
and circle.argEquiv
, that sends the whole circle to (-π, π]
.
@[simp]
theorem
arg_expMapCircle
{x : ℝ}
(h₁ : -Real.pi < x)
(h₂ : x ≤ Real.pi)
:
Complex.arg ↑(expMapCircle x) = x
@[simp]
@[simp]
@[simp]
Complex.arg ∘ (↑)
and expMapCircle
define a partial equivalence between circle
and ℝ
with source = Set.univ
and target = Set.Ioc (-π) π
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
Complex.arg
and expMapCircle
define an equivalence between circle
and (-π, π]
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
leftInverse_expMapCircle_arg :
Function.LeftInverse (⇑expMapCircle) (Complex.arg ∘ Subtype.val)
theorem
invOn_arg_expMapCircle :
Set.InvOn (Complex.arg ∘ Subtype.val) (⇑expMapCircle) (Set.Ioc (-Real.pi) Real.pi) Set.univ
theorem
surjOn_expMapCircle_neg_pi_pi :
Set.SurjOn (⇑expMapCircle) (Set.Ioc (-Real.pi) Real.pi) Set.univ
expMapCircle
, applied to a Real.Angle
.
Instances For
@[simp]
theorem
Real.Angle.coe_expMapCircle
(θ : Real.Angle)
:
↑(Real.Angle.expMapCircle θ) = ↑(Real.Angle.cos θ) + ↑(Real.Angle.sin θ) * Complex.I
@[simp]
@[simp]
theorem
Real.Angle.expMapCircle_add
(θ₁ : Real.Angle)
(θ₂ : Real.Angle)
:
Real.Angle.expMapCircle (θ₁ + θ₂) = Real.Angle.expMapCircle θ₁ * Real.Angle.expMapCircle θ₂
@[simp]
theorem
Real.Angle.arg_expMapCircle
(θ : Real.Angle)
:
↑(Complex.arg ↑(Real.Angle.expMapCircle θ)) = θ