Japanese Bracket #
In this file, we show that Japanese bracket $(1 + |x|^2)^{1/2}$ can be estimated from above
and below by $1 + |x|$.
The functions $(1 + |x|^2)^{-r/2}$ and $(1 + |x|)^{-r}$ are integrable provided that r
is larger
than the dimension.
Main statements #
integrable_one_add_norm
: the function $(1 + |x|)^{-r}$ is integrableintegrable_jap
the Japanese bracket is integrable
theorem
closedBall_rpow_sub_one_eq_empty_aux
(E : Type u_1)
[NormedAddCommGroup E]
{r : ℝ}
{t : ℝ}
(hr : 0 < r)
(ht : 1 < t)
:
theorem
finite_integral_one_add_norm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.Measure.IsAddHaarMeasure μ]
{r : ℝ}
(hnr : ↑(FiniteDimensional.finrank ℝ E) < r)
:
theorem
integrable_one_add_norm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.Measure.IsAddHaarMeasure μ]
{r : ℝ}
(hnr : ↑(FiniteDimensional.finrank ℝ E) < r)
:
theorem
integrable_rpow_neg_one_add_norm_sq
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.Measure.IsAddHaarMeasure μ]
{r : ℝ}
(hnr : ↑(FiniteDimensional.finrank ℝ E) < r)
: