Polar coordinates #
We define polar coordinates, as a partial homeomorphism in ℝ^2
between ℝ^2 - (-∞, 0]
and
(0, +∞) × (-π, π)
. Its inverse is given by (r, θ) ↦ (r cos θ, r sin θ)
.
It satisfies the following change of variables formula (see integral_comp_polarCoord_symm
):
∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) = ∫ p, f p
@[simp]
@[simp]
theorem
polarCoord_symm_apply
(p : ℝ × ℝ)
:
↑(PartialHomeomorph.symm polarCoord) p = (p.1 * Real.cos p.2, p.1 * Real.sin p.2)
@[simp]
theorem
polarCoord_apply
(q : ℝ × ℝ)
:
↑polarCoord q = (Real.sqrt (q.1 ^ 2 + q.2 ^ 2), Complex.arg (Complex.equivRealProd.symm q))
The polar coordinates partial homeomorphism in ℝ^2
, mapping (r cos θ, r sin θ)
to (r, θ)
.
It is a homeomorphism between ℝ^2 - (-∞, 0]
and (0, +∞) × (-π, π)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
hasFDerivAt_polarCoord_symm
(p : ℝ × ℝ)
:
HasFDerivAt (↑(PartialHomeomorph.symm polarCoord))
(LinearMap.toContinuousLinearMap
((Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
(Matrix.of ![![Real.cos p.2, -p.1 * Real.sin p.2], ![Real.sin p.2, p.1 * Real.cos p.2]])))
p
theorem
polarCoord_source_ae_eq_univ :
polarCoord.source =ᶠ[MeasureTheory.Measure.ae MeasureTheory.volume] Set.univ
theorem
integral_comp_polarCoord_symm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : ℝ × ℝ → E)
:
∫ (p : ℝ × ℝ) in polarCoord.target, p.1 • f (↑(PartialHomeomorph.symm polarCoord) p) = ∫ (p : ℝ × ℝ), f p
The polar coordinates partial homeomorphism in ℂ
, mapping r (cos θ + I * sin θ)
to (r, θ)
.
It is a homeomorphism between ℂ - ℝ≤0
and (0, +∞) × (-π, π)
.
Equations
Instances For
@[simp]
theorem
Complex.polarCoord_symm_apply
(p : ℝ × ℝ)
:
↑(PartialHomeomorph.symm Complex.polarCoord) p = ↑p.1 * (↑(Real.cos p.2) + ↑(Real.sin p.2) * Complex.I)
theorem
Complex.polardCoord_symm_abs
(p : ℝ × ℝ)
:
Complex.abs (↑(PartialHomeomorph.symm Complex.polarCoord) p) = |p.1|
theorem
Complex.integral_comp_polarCoord_symm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : ℂ → E)
:
∫ (p : ℝ × ℝ) in polarCoord.target, p.1 • f (↑(PartialHomeomorph.symm Complex.polarCoord) p) = ∫ (p : ℂ), f p