The arctan
function. #
Inequalities, identities and Real.tan
as a PartialHomeomorph
between (-(π / 2), π / 2)
and the whole line.
The result of arctan x + arctan y
is given by arctan_add
, arctan_add_eq_add_pi
or
arctan_add_eq_sub_pi
depending on whether x * y < 1
and 0 < x
. As an application of
arctan_add
we give four Machin-like formulas (linear combinations of arctangents equal to
π / 4 = arctan 1
), including John Machin's original one at
four_mul_arctan_inv_5_sub_arctan_inv_239
.
Inverse of the tan
function, returns values in the range -π / 2 < arctan x
and
arctan x < π / 2
Equations
- Real.arctan x = ↑((OrderIso.symm Real.tanOrderIso) x)
Instances For
theorem
Real.arcsin_eq_arctan
{x : ℝ}
(h : x ∈ Set.Ioo (-1) 1)
:
Real.arcsin x = Real.arctan (x / Real.sqrt (1 - x ^ 2))
theorem
Real.tendsto_arctan_atTop :
Filter.Tendsto Real.arctan Filter.atTop (nhdsWithin (Real.pi / 2) (Set.Iio (Real.pi / 2)))
theorem
Real.tendsto_arctan_atBot :
Filter.Tendsto Real.arctan Filter.atBot (nhdsWithin (-(Real.pi / 2)) (Set.Ioi (-(Real.pi / 2))))
theorem
Real.arctan_eq_arccos
{x : ℝ}
(h : 0 ≤ x)
:
Real.arctan x = Real.arccos (Real.sqrt (1 + x ^ 2))⁻¹
theorem
Real.arccos_eq_arctan
{x : ℝ}
(h : 0 < x)
:
Real.arccos x = Real.arctan (Real.sqrt (1 - x ^ 2) / x)
theorem
Real.arctan_inv_of_neg
{x : ℝ}
(h : x < 0)
:
Real.arctan x⁻¹ = -(Real.pi / 2) - Real.arctan x
theorem
Real.arctan_add_arctan_lt_pi_div_two
{x : ℝ}
{y : ℝ}
(h : x * y < 1)
:
Real.arctan x + Real.arctan y < Real.pi / 2
theorem
Real.arctan_add
{x : ℝ}
{y : ℝ}
(h : x * y < 1)
:
Real.arctan x + Real.arctan y = Real.arctan ((x + y) / (1 - x * y))
theorem
Real.arctan_add_eq_add_pi
{x : ℝ}
{y : ℝ}
(h : 1 < x * y)
(hx : 0 < x)
:
Real.arctan x + Real.arctan y = Real.arctan ((x + y) / (1 - x * y)) + Real.pi
theorem
Real.arctan_add_eq_sub_pi
{x : ℝ}
{y : ℝ}
(h : 1 < x * y)
(hx : x < 0)
:
Real.arctan x + Real.arctan y = Real.arctan ((x + y) / (1 - x * y)) - Real.pi
theorem
Real.two_mul_arctan
{x : ℝ}
(h₁ : -1 < x)
(h₂ : x < 1)
:
2 * Real.arctan x = Real.arctan (2 * x / (1 - x ^ 2))
theorem
Real.two_mul_arctan_add_pi
{x : ℝ}
(h : 1 < x)
:
2 * Real.arctan x = Real.arctan (2 * x / (1 - x ^ 2)) + Real.pi
theorem
Real.two_mul_arctan_sub_pi
{x : ℝ}
(h : x < -1)
:
2 * Real.arctan x = Real.arctan (2 * x / (1 - x ^ 2)) - Real.pi
theorem
Real.two_mul_arctan_inv_2_sub_arctan_inv_7 :
2 * Real.arctan 2⁻¹ - Real.arctan 7⁻¹ = Real.pi / 4
theorem
Real.two_mul_arctan_inv_3_add_arctan_inv_7 :
2 * Real.arctan 3⁻¹ + Real.arctan 7⁻¹ = Real.pi / 4
theorem
Real.four_mul_arctan_inv_5_sub_arctan_inv_239 :
4 * Real.arctan 5⁻¹ - Real.arctan 239⁻¹ = Real.pi / 4
John Machin's 1706 formula, which he used to compute π to 100 decimal places.
Real.tan
as a PartialHomeomorph
between (-(π / 2), π / 2)
and the whole line.
Equations
- One or more equations did not get rendered due to their size.