Sums over residue classes #
We consider infinite sums over functions f
on ℕ
, restricted to a residue class mod m
.
The main result is summable_indicator_mod_iff
, which states that when f : ℕ → ℝ
is
decreasing, then the sum over f
restricted to any residue class
mod m ≠ 0
converges if and only if the sum over all of ℕ
converges.
theorem
Finset.sum_indicator_mod
{R : Type u_1}
[AddCommMonoid R]
(m : ℕ)
[NeZero m]
(f : ℕ → R)
:
f = Finset.sum Finset.univ fun (a : ZMod m) => Set.indicator {n : ℕ | ↑n = a} f
theorem
summable_indicator_mod_iff_summable
{R : Type u_1}
[AddCommGroup R]
[TopologicalSpace R]
[TopologicalAddGroup R]
(m : ℕ)
[hm : NeZero m]
(k : ℕ)
(f : ℕ → R)
:
A sequence f
with values in an additive topological group R
is summable on the
residue class of k
mod m
if and only if f (m*n + k)
is summable.
theorem
summable_indicator_mod_iff_summable_indicator_mod
{m : ℕ}
[NeZero m]
{f : ℕ → ℝ}
(hf : Antitone f)
{k : ZMod m}
(l : ZMod m)
(hs : Summable (Set.indicator {n : ℕ | ↑n = k} f))
:
Summable (Set.indicator {n : ℕ | ↑n = l} f)
If a decreasing sequence of real numbers is summable on one residue class
modulo m
, then it is also summable on every other residue class mod m
.