Documentation

Mathlib.CategoryTheory.ConcreteCategory.BundledHom

Category instances for algebraic structures that use bundled homs. #

Many algebraic structures in Lean initially used unbundled homs (e.g. a bare function between types, along with an IsMonoidHom typeclass), but the general trend is towards using bundled homs.

This file provides a basic infrastructure to define concrete categories using bundled homs, and define forgetful functors between them.

class CategoryTheory.BundledHom {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) :
Type (u + 1)

Class for bundled homs. Note that the arguments order follows that of lemmas for MonoidHom. This way we can use ⟨@MonoidHom.toFun, @MonoidHom.id ...⟩ in an instance.

  • toFun : {α β : Type u} → ( : c α) → ( : c β) → hom αβ

    the underlying map of a bundled morphism

  • id : {α : Type u} → (I : c α) → hom I I

    the identity as a bundled morphism

  • comp : {α β γ : Type u} → ( : c α) → ( : c β) → ( : c γ) → hom hom hom

    composition of bundled morphisms

  • hom_ext : ∀ {α β : Type u} ( : c α) ( : c β), Function.Injective (self.toFun )

    a bundled morphism is determined by the underlying map

  • id_toFun : ∀ {α : Type u} (I : c α), self.toFun I I (self.id I) = id

    compatibility with identities

  • comp_toFun : ∀ {α β γ : Type u} ( : c α) ( : c β) ( : c γ) (f : hom ) (g : hom ), self.toFun (self.comp g f) = self.toFun g self.toFun f

    compatibility with the composition

Instances
instance CategoryTheory.BundledHom.category {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) [𝒞 : CategoryTheory.BundledHom hom] :

Every @BundledHom c _ defines a category with objects in Bundled c.

This instance generates the type-class problem BundledHom ?m. Currently that is not a problem, as there are almost no instances of BundledHom.

Equations
instance CategoryTheory.BundledHom.concreteCategory {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) [𝒞 : CategoryTheory.BundledHom hom] :

A category given by BundledHom is a concrete category.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.BundledHom.mkHasForget₂ {c : Type u → Type u} {hom : α β : Type u⦄ → c αc βType u} [𝒞 : CategoryTheory.BundledHom hom] {d : Type u → Type u} {hom_d : α β : Type u⦄ → d αd βType u} [CategoryTheory.BundledHom hom_d] (obj : α : Type u⦄ → c αd α) (map : {X Y : CategoryTheory.Bundled c} → (X Y)(CategoryTheory.Bundled.map obj X CategoryTheory.Bundled.map obj Y)) (h_map : ∀ {X Y : CategoryTheory.Bundled c} (f : X Y), (map f) = f) :

A version of HasForget₂.mk' for categories defined using @BundledHom.

Equations
@[reducible]
def CategoryTheory.BundledHom.MapHom {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) {d : Type u → Type u} (F : {α : Type u} → d αc α) ⦃α : Type u⦄ ⦃β : Type u⦄ :
d αd βType u

The hom corresponding to first forgetting along F, then taking the hom associated to c.

For typical usage, see the construction of CommMonCat from MonCat.

Equations
Instances For
def CategoryTheory.BundledHom.map {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) [𝒞 : CategoryTheory.BundledHom hom] {d : Type u → Type u} (F : {α : Type u} → d αc α) :

Construct the CategoryTheory.BundledHom induced by a map between type classes. This is useful for building categories such as CommMonCat from MonCat.

Equations
  • One or more equations did not get rendered due to their size.
instance CategoryTheory.BundledHom.forget₂ {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) [𝒞 : CategoryTheory.BundledHom hom] {d : Type u → Type u} (F : {α : Type u} → d αc α) [CategoryTheory.BundledHom.ParentProjection F] :
Equations
  • One or more equations did not get rendered due to their size.
instance CategoryTheory.BundledHom.forget₂Full {c : Type u → Type u} (hom : α β : Type u⦄ → c αc βType u) [𝒞 : CategoryTheory.BundledHom hom] {d : Type u → Type u} (F : {α : Type u} → d αc α) [CategoryTheory.BundledHom.ParentProjection F] :
Equations
  • One or more equations did not get rendered due to their size.