Documentation

Mathlib.Data.Rat.Cast.Defs

Casts for Rational Numbers #

Summary #

We define the canonical injection from ℚ into an arbitrary division ring and prove various casting lemmas showing the well-behavedness of this injection.

Notations #

Tags #

rat, rationals, field, ℚ, numerator, denominator, num, denom, cast, coercion, casting

@[simp]
theorem Rat.cast_intCast {α : Type u_3} [DivisionRing α] (n : ) :
n = n
@[simp]
theorem Rat.cast_natCast {α : Type u_3} [DivisionRing α] (n : ) :
n = n
@[deprecated Rat.cast_intCast]
theorem Rat.cast_coe_int {α : Type u_3} [DivisionRing α] (n : ) :
n = n

Alias of Rat.cast_intCast.

@[deprecated Rat.cast_natCast]
theorem Rat.cast_coe_nat {α : Type u_3} [DivisionRing α] (n : ) :
n = n

Alias of Rat.cast_natCast.

@[simp]
theorem Rat.cast_ofNat {α : Type u_3} [DivisionRing α] (n : ) [Nat.AtLeastTwo n] :
@[simp]
theorem Rat.cast_zero {α : Type u_3} [DivisionRing α] :
0 = 0
@[simp]
theorem Rat.cast_one {α : Type u_3} [DivisionRing α] :
1 = 1
theorem Rat.cast_commute {α : Type u_3} [DivisionRing α] (r : ) (a : α) :
Commute (r) a
theorem Rat.cast_comm {α : Type u_3} [DivisionRing α] (r : ) (a : α) :
r * a = a * r
theorem Rat.commute_cast {α : Type u_3} [DivisionRing α] (a : α) (r : ) :
Commute a r
theorem Rat.cast_mk_of_ne_zero {α : Type u_3} [DivisionRing α] (a : ) (b : ) (b0 : b 0) :
(Rat.divInt a b) = a / b
theorem Rat.cast_add_of_ne_zero {α : Type u_3} [DivisionRing α] {m : } {n : } :
m.den 0n.den 0(m + n) = m + n
@[simp]
theorem Rat.cast_neg {α : Type u_3} [DivisionRing α] (n : ) :
(-n) = -n
theorem Rat.cast_sub_of_ne_zero {α : Type u_3} [DivisionRing α] {m : } {n : } (m0 : m.den 0) (n0 : n.den 0) :
(m - n) = m - n
theorem Rat.cast_mul_of_ne_zero {α : Type u_3} [DivisionRing α] {m : } {n : } :
m.den 0n.den 0(m * n) = m * n
theorem Rat.cast_inv_of_ne_zero {α : Type u_3} [DivisionRing α] {n : } :
n.num 0n.den 0n⁻¹ = (n)⁻¹
theorem Rat.cast_div_of_ne_zero {α : Type u_3} [DivisionRing α] {m : } {n : } (md : m.den 0) (nn : n.num 0) (nd : n.den 0) :
(m / n) = m / n
theorem Rat.cast_id (n : ) :
n = n
@[simp]
theorem Rat.cast_eq_id :
(fun (x : ) => x) = id
@[simp]
theorem map_ratCast {F : Type u_1} {α : Type u_3} {β : Type u_4} [FunLike F α β] [DivisionRing α] [DivisionRing β] [RingHomClass F α β] (f : F) (q : ) :
f q = q
@[simp]
theorem eq_ratCast {F : Type u_1} {k : Type u_5} [DivisionRing k] [FunLike F k] [RingHomClass F k] (f : F) (r : ) :
f r = r
theorem MonoidWithZeroHom.ext_rat' {F : Type u_1} {M₀ : Type u_5} [MonoidWithZero M₀] [FunLike F M₀] [MonoidWithZeroHomClass F M₀] {f : F} {g : F} (h : ∀ (m : ), f m = g m) :
f = g

If f and g agree on the integers then they are equal φ.

If f and g agree on the integers then they are equal φ.

See note [partially-applied ext lemmas] for why comp is used here.

theorem MonoidWithZeroHom.ext_rat_on_pnat {F : Type u_1} {M₀ : Type u_5} [MonoidWithZero M₀] [FunLike F M₀] [MonoidWithZeroHomClass F M₀] {f : F} {g : F} (same_on_neg_one : f (-1) = g (-1)) (same_on_pnat : ∀ (n : ), 0 < nf n = g n) :
f = g

Positive integer values of a morphism φ and its value on -1 completely determine φ.

theorem RingHom.ext_rat {F : Type u_1} {R : Type u_5} [Semiring R] [FunLike F R] [RingHomClass F R] (f : F) (g : F) :
f = g

Any two ring homomorphisms from to a semiring are equal. If the codomain is a division ring, then this lemma follows from eq_ratCast.

Equations
  • =
instance Rat.distribSMul {K : Type u_5} [DivisionRing K] :
Equations
Equations
  • =