Type tags for right action on the domain of a function #
By default, M
acts on α → β
if it acts on β
, and the action is given by
(c • f) a = c • (f a)
.
In some cases, it is useful to consider another action: if M
acts on α
on the left, then it acts
on α → β
on the right so that (c • f) a = f (c • a)
. E.g., this action is used to reformulate
the Mean Ergodic Theorem in terms of an operator on (L^2).
Main definitions #
DomMulAct M
(notation:Mᵈᵐᵃ
): type synonym forMᵐᵒᵖ
; ifM
multiplicatively acts onα
, thenMᵈᵐᵃ
acts onα → β
for any typeβ
;DomAddAct M
(notation:Mᵈᵃᵃ
): the additive version.
We also define actions of Mᵈᵐᵃ
on:
α → β
provided thatM
acts onα
;A →* B
provided thatM
acts onA
by aMulDistribMulAction
;A →+ B
provided thatM
acts onA
by aDistribMulAction
.
Implementation details #
Motivation #
Right action can be represented in mathlib
as an action of the opposite group Mᵐᵒᵖ
. However,
this "domain shift" action cannot be an instance because this would create a "diamond"
(a.k.a. ambiguous notation): if M
is a monoid, then how does Mᵐᵒᵖ
act on M → M
? On the one
hand, Mᵐᵒᵖ
acts on M
by c • a = a * c.unop
, thus we have an action
(c • f) a = f a * c.unop
. On the other hand, M
acts on itself by multiplication on the left, so
with this new instance we would have (c • f) a = f (c.unop * a)
. Clearly, these are two different
actions, so both of them cannot be instances in the library.
To overcome this difficulty, we introduce a type synonym DomMulAct M := Mᵐᵒᵖ
(notation:
Mᵈᵐᵃ
). This new type carries the same algebraic structures as Mᵐᵒᵖ
but acts on α → β
by this
new action. So, e.g., Mᵈᵐᵃ
acts on (M → M) → M
by DomMulAct.mk c • F f = F (fun a ↦ c • f a)
while (Mᵈᵐᵃ)ᵈᵐᵃ
(which is isomorphic to M
) acts on (M → M) → M
by
DomMulAct.mk (DomMulAct.mk c) • F f = F (fun a ↦ f (c • a))
.
Action on bundled homomorphisms #
If the action of M
on A
preserves some structure, then Mᵈᵐᵃ
acts on bundled homomorphisms from
A
to any type B
that preserve the same structure. Examples (some of them are not yet in the
library) include:
- a
MulDistribMulAction
generates an action onA →* B
; - a
DistribMulAction
generates an action onA →+ B
; - an action on
α
that commutes with action of some other monoidN
generates an action onα →[N] β
; - a
DistribMulAction
on anR
-module that commutes with scalar multiplications byc : R
generates an action onR
-linear maps from this module; - a continuous action on
X
generates an action onC(X, Y)
; - a measurable action on
X
generates an action on{ f : X → Y // Measurable f }
; - a quasi measure preserving action on
X
generates an action onX →ₘ[μ] Y
; - a measure preserving action generates an isometric action on
MeasureTheory.Lp _ _ _
.
Left action vs right action #
It is common in the literature to consider the left action given by (c • f) a = f (c⁻¹ • a)
instead of the action defined in this file. However, this left action is defined only if c
belongs
to a group, not to a monoid, so we decided to go with the right action.
The left action can be written in terms of DomMulAct
as (DomMulAct.mk c)⁻¹ • f
. As for higher
level dynamics objects (orbits, invariant functions etc), they coincide for the left and for the
right action, so lemmas can be formulated in terms of DomMulAct
.
Keywords #
group action, function, domain
If M
additively acts on α
, then DomAddAct M
acts on α → β
as
well as some bundled maps from α
. This is a type synonym for AddOpposite M
, so this corresponds
to a right action of M
.
Instances For
- DomAddAct.instAddActionDomAddActForAllInstAddMonoidDomAddActAddMonoid
- DomAddAct.instAddCancelCommMonoidDomAddAct
- DomAddAct.instAddCancelMonoidDomAddAct
- DomAddAct.instAddCommGroupDomAddAct
- DomAddAct.instAddCommMonoidDomAddAct
- DomAddAct.instAddCommSemigroupDomAddAct
- DomAddAct.instAddDomAddAct
- DomAddAct.instAddGroupDomAddAct
- DomAddAct.instAddLeftCancelMonoidDomAddAct
- DomAddAct.instAddLeftCancelSemigroupDomAddAct
- DomAddAct.instAddMonoidDomAddAct
- DomAddAct.instAddRightCancelMonoidDomAddAct
- DomAddAct.instAddRightCancelSemigroupDomAddAct
- DomAddAct.instAddSemigroupDomAddAct
- DomAddAct.instAddZeroClassDomAddAct
- DomAddAct.instCommRingDomAddAct
- DomAddAct.instDivisionAddCommMonoidDomAddAct
- DomAddAct.instDivisionAddMonoidDomAddAct
- DomAddAct.instFaithfulVAddDomAddActForAllInstVAddDomAddActForAll
- DomAddAct.instInvolutiveNegDomAddAct
- DomAddAct.instIsAddCancelDomAddActInstAddDomAddAct
- DomAddAct.instIsAddLeftCancelDomAddActInstAddDomAddAct
- DomAddAct.instIsAddRightCancelDomAddActInstAddDomAddAct
- DomAddAct.instNegDomAddAct
- DomAddAct.instNegZeroClassDomAddAct
- DomAddAct.instNonAssocSemiringDomAddAct
- DomAddAct.instNonAssocSemiringDomAddAct_1
- DomAddAct.instNonUnitalSemiringDomAddAct
- DomAddAct.instRingDomAddAct
- DomAddAct.instSemiringDomAddAct
- DomAddAct.instSubNegAddMonoidDomAddAct
- DomAddAct.instSubNegZeroAddMonoidDomAddAct
- DomAddAct.instVAddCommClassDomAddActDomAddActForAllInstVAddDomAddActForAllInstVAddDomAddActForAll
- DomAddAct.instVAddCommClassDomAddActForAllInstVAddDomAddActForAllInstVAdd
- DomAddAct.instVAddCommClassDomAddActForAllInstVAddInstVAddDomAddActForAll
- DomAddAct.instVAddDomAddActForAll
- DomAddAct.instZeroDomAddAct
If M
multiplicatively acts on α
, then DomMulAct M
acts on α → β
as well as some
bundled maps from α
. This is a type synonym for MulOpposite M
, so this corresponds to a right
action of M
.
Instances For
- AddMonoidHom.instDomMulActModule
- DomMulAct.instCancelCommMonoidDomMulAct
- DomMulAct.instCancelMonoidDomMulAct
- DomMulAct.instCommGroupDomMulAct
- DomMulAct.instCommMonoidDomMulAct
- DomMulAct.instCommRingDomMulAct
- DomMulAct.instCommSemigroupDomMulAct
- DomMulAct.instDistribMulActionDomMulActAddMonoidHomToAddZeroClassToAddZeroClassToAddMonoidInstMonoidDomMulActMonoidToAddMonoidAddCommMonoid
- DomMulAct.instDistribMulActionDomMulActForAllInstMonoidDomMulActMonoidAddMonoid
- DomMulAct.instDistribSMulDomMulActForAllAddZeroClass
- DomMulAct.instDivInvMonoidDomMulAct
- DomMulAct.instDivInvOneMonoidDomMulAct
- DomMulAct.instDivisionCommMonoidDomMulAct
- DomMulAct.instDivisionMonoidDomMulAct
- DomMulAct.instFaithfulSMulDomMulActForAllInstSMulDomMulActForAll
- DomMulAct.instGroupDomMulAct
- DomMulAct.instInvDomMulAct
- DomMulAct.instInvOneClassDomMulAct
- DomMulAct.instInvolutiveInvDomMulAct
- DomMulAct.instIsCancelMulDomMulActInstMulDomMulAct
- DomMulAct.instIsLeftCancelMulDomMulActInstMulDomMulAct
- DomMulAct.instIsRightCancelMulDomMulActInstMulDomMulAct
- DomMulAct.instLeftCancelMonoidDomMulAct
- DomMulAct.instLeftCancelSemigroupDomMulAct
- DomMulAct.instMonoidDomMulAct
- DomMulAct.instMulActionDomMulActAddMonoidHomToAddZeroClassInstMonoidDomMulActMonoid
- DomMulAct.instMulActionDomMulActForAllInstMonoidDomMulActMonoid
- DomMulAct.instMulActionDomMulActMonoidHomToMulOneClassInstMonoidDomMulActMonoid
- DomMulAct.instMulDistribMulActionDomMulActForAllInstMonoidDomMulActMonoidMonoid
- DomMulAct.instMulDistribMulActionDomMulActMonoidHomToMulOneClassToMulOneClassToMonoidInstMonoidDomMulActMonoidToMonoidCommMonoid
- DomMulAct.instMulDomMulAct
- DomMulAct.instMulOneClassDomMulAct
- DomMulAct.instNonAssocSemiringDomMulAct
- DomMulAct.instNonAssocSemiringDomMulAct_1
- DomMulAct.instNonUnitalSemiringDomMulAct
- DomMulAct.instOneDomMulAct
- DomMulAct.instRightCancelMonoidDomMulAct
- DomMulAct.instRightCancelSemigroupDomMulAct
- DomMulAct.instRingDomMulAct
- DomMulAct.instSMulCommClassDomMulActAddMonoidHomToAddZeroClassInstSMulDomMulActAddMonoidHomToAddZeroClassToSMulInstZeroAddMonoidHomSmulZeroClass
- DomMulAct.instSMulCommClassDomMulActDomMulActAddMonoidHomToAddZeroClassInstSMulDomMulActAddMonoidHomToAddZeroClassInstSMulDomMulActAddMonoidHomToAddZeroClass
- DomMulAct.instSMulCommClassDomMulActDomMulActForAllInstSMulDomMulActForAllInstSMulDomMulActForAll
- DomMulAct.instSMulCommClassDomMulActDomMulActMonoidHomToMulOneClassInstSMulDomMulActMonoidHomToMulOneClassInstSMulDomMulActMonoidHomToMulOneClass
- DomMulAct.instSMulCommClassDomMulActForAllInstSMulDomMulActForAllInstSMul
- DomMulAct.instSMulCommClassDomMulActForAllInstSMulInstSMulDomMulActForAll
- DomMulAct.instSMulDomMulActAddMonoidHomToAddZeroClass
- DomMulAct.instSMulDomMulActForAll
- DomMulAct.instSMulDomMulActMonoidHomToMulOneClass
- DomMulAct.instSMulZeroClassDomMulActForAllInstZero
- DomMulAct.instSemigroupDomMulAct
- DomMulAct.instSemiringDomMulAct
- LinearMap.instDistribMulActionDomMulActLinearMapInstMonoidDomMulActMonoidToAddMonoidAddCommMonoid
- LinearMap.instModuleDomMulActLinearMapInstSemiringDomMulActInstSemiringAddCommMonoid
- LinearMap.instSMulCommClassDomMulActDomMulActLinearMapInstSMulDomMulActLinearMapInstSMulDomMulActLinearMap
- LinearMap.instSMulDomMulActLinearMap
If M
multiplicatively acts on α
, then DomMulAct M
acts on α → β
as well as some
bundled maps from α
. This is a type synonym for MulOpposite M
, so this corresponds to a right
action of M
.
Equations
- «term_ᵈᵐᵃ» = Lean.ParserDescr.trailingNode `term_ᵈᵐᵃ 1024 1024 (Lean.ParserDescr.symbol "ᵈᵐᵃ")
If M
additively acts on α
, then DomAddAct M
acts on α → β
as
well as some bundled maps from α
. This is a type synonym for AddOpposite M
, so this corresponds
to a right action of M
.
Equations
- «term_ᵈᵃᵃ» = Lean.ParserDescr.trailingNode `term_ᵈᵃᵃ 1024 1024 (Lean.ParserDescr.symbol "ᵈᵃᵃ")
Copy instances from Mᵐᵒᵖ
#
Equations
- DomAddAct.instSubNegAddMonoidDomAddAct = inst
Equations
- DomAddAct.instAddCommGroupDomAddAct = inst
Equations
- DomMulAct.instNonAssocSemiringDomMulAct_1 = inst
Equations
- DomAddAct.instInvolutiveNegDomAddAct = inst
Equations
- DomMulAct.instMulOneClassDomMulAct = inst
Equations
- DomAddAct.instSubNegZeroAddMonoidDomAddAct = inst
Equations
- DomAddAct.instAddSemigroupDomAddAct = inst
Equations
- DomAddAct.instAddCancelMonoidDomAddAct = inst
Equations
- DomAddAct.instAddLeftCancelMonoidDomAddAct = inst
Equations
- DomMulAct.instCommSemigroupDomMulAct = inst
Equations
- DomMulAct.instDivInvMonoidDomMulAct = inst
Equations
- DomMulAct.instCancelMonoidDomMulAct = inst
Equations
- DomMulAct.instCancelCommMonoidDomMulAct = inst
Equations
- DomMulAct.instInvolutiveInvDomMulAct = inst
Equations
- DomAddAct.instNegZeroClassDomAddAct = inst
Equations
- DomAddAct.instAddCommMonoidDomAddAct = inst
Equations
- DomAddAct.instDivisionAddCommMonoidDomAddAct = inst
Equations
- DomMulAct.instDivisionMonoidDomMulAct = inst
Equations
- DomMulAct.instLeftCancelSemigroupDomMulAct = inst
Equations
- DomMulAct.instNonUnitalSemiringDomMulAct = inst
Equations
- DomMulAct.instLeftCancelMonoidDomMulAct = inst
Equations
- DomMulAct.instDivisionCommMonoidDomMulAct = inst
Equations
- DomAddAct.instNonUnitalSemiringDomAddAct = inst
Equations
- DomAddAct.instAddCommSemigroupDomAddAct = inst
Equations
- DomAddAct.instAddLeftCancelSemigroupDomAddAct = inst
Equations
- DomMulAct.instDivInvOneMonoidDomMulAct = inst
Equations
- DomAddAct.instNonAssocSemiringDomAddAct = inst
Equations
- DomMulAct.instRightCancelSemigroupDomMulAct = inst
Equations
- DomMulAct.instNonAssocSemiringDomMulAct = inst
Equations
- DomMulAct.instRightCancelMonoidDomMulAct = inst
Equations
- DomAddAct.instNonAssocSemiringDomAddAct_1 = inst
Equations
- DomAddAct.instAddRightCancelSemigroupDomAddAct = inst
Equations
- DomMulAct.instCommMonoidDomMulAct = inst
Equations
- DomAddAct.instAddCancelCommMonoidDomAddAct = inst
Equations
- DomAddAct.instDivisionAddMonoidDomAddAct = inst
Equations
- DomMulAct.instInvOneClassDomMulAct = inst
Equations
- DomAddAct.instAddZeroClassDomAddAct = inst
Equations
- DomAddAct.instAddRightCancelMonoidDomAddAct = inst
Equations
- ⋯ = inst
Equations
- ⋯ = inst
Equations
- ⋯ = inst
Equations
- ⋯ = inst
Equations
- ⋯ = inst
Equations
- ⋯ = inst
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- DomMulAct.instSMulZeroClassDomMulActForAllInstZero = SMulZeroClass.mk ⋯
Equations
- DomMulAct.instDistribSMulDomMulActForAllAddZeroClass = DistribSMul.mk ⋯
Equations
- DomMulAct.instDistribMulActionDomMulActForAllInstMonoidDomMulActMonoidAddMonoid = DistribMulAction.mk ⋯ ⋯
Equations
- DomMulAct.instMulDistribMulActionDomMulActForAllInstMonoidDomMulActMonoidMonoid = MulDistribMulAction.mk ⋯ ⋯
Equations
- DomMulAct.instSMulDomMulActMonoidHomToMulOneClass = { smul := fun (c : Mᵈᵐᵃ) (f : A →* B) => MonoidHom.comp f (MulDistribMulAction.toMonoidHom A (DomMulAct.mk.symm c)) }
Equations
- ⋯ = ⋯
Equations
- DomMulAct.instMulActionDomMulActMonoidHomToMulOneClassInstMonoidDomMulActMonoid = Function.Injective.mulAction DFunLike.coe ⋯ ⋯
Equations
- DomMulAct.instSMulDomMulActAddMonoidHomToAddZeroClass = { smul := fun (c : Mᵈᵐᵃ) (f : A →+ B) => AddMonoidHom.comp f (DistribSMul.toAddMonoidHom A (DomMulAct.mk.symm c)) }
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- DomMulAct.instMulActionDomMulActAddMonoidHomToAddZeroClassInstMonoidDomMulActMonoid = Function.Injective.mulAction DFunLike.coe ⋯ ⋯
Equations
- One or more equations did not get rendered due to their size.
Equations
- DomMulAct.instMulDistribMulActionDomMulActMonoidHomToMulOneClassToMulOneClassToMonoidInstMonoidDomMulActMonoidToMonoidCommMonoid = Function.Injective.mulDistribMulAction (MonoidHom.coeFn A B) ⋯ ⋯