Documentation

Mathlib.GroupTheory.Index

Index of a Subgroup #

In this file we define the index of a subgroup, and prove several divisibility properties. Several theorems proved in this file are known as Lagrange's theorem.

Main definitions #

Main results #

noncomputable def AddSubgroup.index {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :

The index of a subgroup as a natural number, and returns 0 if the index is infinite.

Equations
noncomputable def Subgroup.index {G : Type u_1} [Group G] (H : Subgroup G) :

The index of a subgroup as a natural number, and returns 0 if the index is infinite.

Equations
noncomputable def AddSubgroup.relindex {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (K : AddSubgroup G) :

The relative index of a subgroup as a natural number, and returns 0 if the relative index is infinite.

Equations
noncomputable def Subgroup.relindex {G : Type u_1} [Group G] (H : Subgroup G) (K : Subgroup G) :

The relative index of a subgroup as a natural number, and returns 0 if the relative index is infinite.

Equations
theorem Subgroup.index_comap_of_surjective {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] {f : G' →* G} (hf : Function.Surjective f) :
theorem Subgroup.index_comap {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] (f : G' →* G) :
theorem Subgroup.relindex_comap {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] (f : G' →* G) (K : Subgroup G') :
theorem Subgroup.index_dvd_of_le {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (h : H K) :
theorem Subgroup.relindex_mul_relindex {G : Type u_1} [Group G] (H : Subgroup G) (K : Subgroup G) (L : Subgroup G) (hHK : H K) (hKL : K L) :
theorem Subgroup.relindex_dvd_of_le_left {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (L : Subgroup G) (hHK : H K) :
theorem AddSubgroup.index_eq_two_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
AddSubgroup.index H = 2 ∃ (a : G), ∀ (b : G), Xor' (b + a H) (b H)

An additive subgroup has index two if and only if there exists a such that for all b, exactly one of b + a and b belong to H.

theorem Subgroup.index_eq_two_iff {G : Type u_1} [Group G] {H : Subgroup G} :
Subgroup.index H = 2 ∃ (a : G), ∀ (b : G), Xor' (b * a H) (b H)

A subgroup has index two if and only if there exists a such that for all b, exactly one of b * a and b belong to H.

theorem AddSubgroup.add_mem_iff_of_index_two {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (h : AddSubgroup.index H = 2) {a : G} {b : G} :
a + b H (a H b H)
theorem Subgroup.mul_mem_iff_of_index_two {G : Type u_1} [Group G] {H : Subgroup G} (h : Subgroup.index H = 2) {a : G} {b : G} :
a * b H (a H b H)
theorem AddSubgroup.add_self_mem_of_index_two {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (h : AddSubgroup.index H = 2) (a : G) :
a + a H
theorem Subgroup.mul_self_mem_of_index_two {G : Type u_1} [Group G] {H : Subgroup G} (h : Subgroup.index H = 2) (a : G) :
a * a H
theorem AddSubgroup.two_smul_mem_of_index_two {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (h : AddSubgroup.index H = 2) (a : G) :
2 a H
theorem Subgroup.sq_mem_of_index_two {G : Type u_1} [Group G] {H : Subgroup G} (h : Subgroup.index H = 2) (a : G) :
a ^ 2 H
@[simp]
theorem Subgroup.index_top {G : Type u_1} [Group G] :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Subgroup.relindex_self {G : Type u_1} [Group G] (H : Subgroup G) :
theorem AddSubgroup.index_ker {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (f : G →+ H) :
theorem Subgroup.index_ker {G : Type u_1} [Group G] {H : Type u_2} [Group H] (f : G →* H) :
theorem AddSubgroup.relindex_ker {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (f : G →+ H) (K : AddSubgroup G) :
theorem Subgroup.relindex_ker {G : Type u_1} [Group G] {H : Type u_2} [Group H] (f : G →* H) (K : Subgroup G) :
@[simp]
theorem Subgroup.card_mul_index {G : Type u_1} [Group G] (H : Subgroup G) :
theorem AddSubgroup.nat_card_dvd_of_injective {G : Type u_2} {H : Type u_3} [AddGroup G] [AddGroup H] (f : G →+ H) (hf : Function.Injective f) :
theorem Subgroup.nat_card_dvd_of_injective {G : Type u_2} {H : Type u_3} [Group G] [Group H] (f : G →* H) (hf : Function.Injective f) :
theorem AddSubgroup.nat_card_dvd_of_le {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (K : AddSubgroup G) (hHK : H K) :
theorem Subgroup.nat_card_dvd_of_le {G : Type u_1} [Group G] (H : Subgroup G) (K : Subgroup G) (hHK : H K) :
theorem Subgroup.nat_card_dvd_of_surjective {G : Type u_2} {H : Type u_3} [Group G] [Group H] (f : G →* H) (hf : Function.Surjective f) :
theorem Subgroup.card_dvd_of_surjective {G : Type u_2} {H : Type u_3} [Group G] [Group H] [Fintype G] [Fintype H] (f : G →* H) (hf : Function.Surjective f) :
theorem Subgroup.index_map_dvd {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] {f : G →* G'} (hf : Function.Surjective f) :
theorem Subgroup.dvd_index_map {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] {f : G →* G'} (hf : MonoidHom.ker f H) :
theorem Subgroup.index_map_eq {G : Type u_1} [Group G] (H : Subgroup G) {G' : Type u_2} [Group G'] {f : G →* G'} (hf1 : Function.Surjective f) (hf2 : MonoidHom.ker f H) :
theorem Subgroup.relindex_eq_zero_of_le_left {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hHK : H K) (hKL : Subgroup.relindex K L = 0) :
theorem Subgroup.relindex_eq_zero_of_le_right {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hKL : K L) (hHK : Subgroup.relindex H K = 0) :
theorem Subgroup.relindex_le_of_le_left {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hHK : H K) (hHL : Subgroup.relindex H L 0) :
theorem Subgroup.relindex_le_of_le_right {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hKL : K L) (hHL : Subgroup.relindex H L 0) :
theorem Subgroup.relindex_ne_zero_trans {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hHK : Subgroup.relindex H K 0) (hKL : Subgroup.relindex K L 0) :
theorem Subgroup.relindex_inf_ne_zero {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {L : Subgroup G} (hH : Subgroup.relindex H L 0) (hK : Subgroup.relindex K L 0) :
theorem Subgroup.index_inf_ne_zero {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (hH : Subgroup.index H 0) (hK : Subgroup.index K 0) :
theorem AddSubgroup.relindex_iInf_ne_zero {G : Type u_1} [AddGroup G] {L : AddSubgroup G} {ι : Type u_2} [_hι : Finite ι] {f : ιAddSubgroup G} (hf : ∀ (i : ι), AddSubgroup.relindex (f i) L 0) :
AddSubgroup.relindex (⨅ (i : ι), f i) L 0
theorem Subgroup.relindex_iInf_ne_zero {G : Type u_1} [Group G] {L : Subgroup G} {ι : Type u_2} [_hι : Finite ι] {f : ιSubgroup G} (hf : ∀ (i : ι), Subgroup.relindex (f i) L 0) :
Subgroup.relindex (⨅ (i : ι), f i) L 0
theorem AddSubgroup.relindex_iInf_le {G : Type u_1} [AddGroup G] {L : AddSubgroup G} {ι : Type u_2} [Fintype ι] (f : ιAddSubgroup G) :
AddSubgroup.relindex (⨅ (i : ι), f i) L Finset.prod Finset.univ fun (i : ι) => AddSubgroup.relindex (f i) L
abbrev AddSubgroup.relindex_iInf_le.match_1 {G : Type u_2} [AddGroup G] {L : AddSubgroup G} {ι : Type u_1} [Fintype ι] (f : ιAddSubgroup G) (motive : (∃ a ∈ Finset.univ, Nat.card (L AddSubgroup.addSubgroupOf (f a) L) = 0)Prop) :
∀ (x : ∃ a ∈ Finset.univ, Nat.card (L AddSubgroup.addSubgroupOf (f a) L) = 0), (∀ (i : ι) (_hi : i Finset.univ) (h : Nat.card (L AddSubgroup.addSubgroupOf (f i) L) = 0), motive )motive x
Equations
  • =
theorem Subgroup.relindex_iInf_le {G : Type u_1} [Group G] {L : Subgroup G} {ι : Type u_2} [Fintype ι] (f : ιSubgroup G) :
Subgroup.relindex (⨅ (i : ι), f i) L Finset.prod Finset.univ fun (i : ι) => Subgroup.relindex (f i) L
theorem AddSubgroup.index_iInf_ne_zero {G : Type u_1} [AddGroup G] {ι : Type u_2} [Finite ι] {f : ιAddSubgroup G} (hf : ∀ (i : ι), AddSubgroup.index (f i) 0) :
AddSubgroup.index (⨅ (i : ι), f i) 0
theorem Subgroup.index_iInf_ne_zero {G : Type u_1} [Group G] {ι : Type u_2} [Finite ι] {f : ιSubgroup G} (hf : ∀ (i : ι), Subgroup.index (f i) 0) :
Subgroup.index (⨅ (i : ι), f i) 0
theorem AddSubgroup.index_iInf_le {G : Type u_1} [AddGroup G] {ι : Type u_2} [Fintype ι] (f : ιAddSubgroup G) :
AddSubgroup.index (⨅ (i : ι), f i) Finset.prod Finset.univ fun (i : ι) => AddSubgroup.index (f i)
theorem Subgroup.index_iInf_le {G : Type u_1} [Group G] {ι : Type u_2} [Fintype ι] (f : ιSubgroup G) :
Subgroup.index (⨅ (i : ι), f i) Finset.prod Finset.univ fun (i : ι) => Subgroup.index (f i)
@[simp]
@[simp]
theorem Subgroup.index_eq_one {G : Type u_1} [Group G] {H : Subgroup G} :
@[simp]
@[simp]
theorem Subgroup.relindex_eq_one {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} :
@[simp]
theorem AddSubgroup.card_eq_one {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
Nat.card H = 1 H =
@[simp]
theorem Subgroup.card_eq_one {G : Type u_1} [Group G] {H : Subgroup G} :
Nat.card H = 1 H =
theorem Subgroup.index_ne_zero_of_finite {G : Type u_1} [Group G] {H : Subgroup G} [hH : Finite (G H)] :
noncomputable def AddSubgroup.fintypeOfIndexNeZero {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (hH : AddSubgroup.index H 0) :
Fintype (G H)

Finite index implies finite quotient.

Equations
noncomputable def Subgroup.fintypeOfIndexNeZero {G : Type u_1} [Group G] {H : Subgroup G} (hH : Subgroup.index H 0) :
Fintype (G H)

Finite index implies finite quotient.

Equations
theorem Subgroup.one_lt_index_of_ne_top {G : Type u_1} [Group G] {H : Subgroup G} [Finite (G H)] (hH : H ) :

A finite index subgroup has finite quotient

Equations
noncomputable def Subgroup.fintypeQuotientOfFiniteIndex {G : Type u_1} [Group G] (H : Subgroup G) [Subgroup.FiniteIndex H] :
Fintype (G H)

A finite index subgroup has finite quotient.

Equations
Equations
  • =
Equations
  • =
Equations
  • =
instance Subgroup.finiteIndex_ker {G : Type u_1} [Group G] {G' : Type u_2} [Group G'] (f : G →* G') [Finite (MonoidHom.range f)] :
Equations
  • =