Documentation

Mathlib.Init.Data.Nat.Lemmas

addition

multiplication

theorem Nat.eq_zero_of_mul_eq_zero {n : } {m : } :
n * m = 0n = 0 m = 0

properties of inequality

def Nat.ltGeByCases {a : } {b : } {C : Sort u} (h₁ : a < bC) (h₂ : b aC) :
C
Equations
def Nat.ltByCases {a : } {b : } {C : Sort u} (h₁ : a < bC) (h₂ : a = bC) (h₃ : b < aC) :
C
Equations

bit0/bit1 properties

theorem Nat.bit1_ne_one {n : } :
n 0bit1 n 1
theorem Nat.bit0_ne_one (n : ) :
bit0 n 1
theorem Nat.bit1_ne_bit0 (n : ) (m : ) :
theorem Nat.bit0_ne_bit1 (n : ) (m : ) :
theorem Nat.bit0_inj {n : } {m : } :
bit0 n = bit0 mn = m
theorem Nat.bit1_inj {n : } {m : } :
bit1 n = bit1 mn = m
theorem Nat.bit0_ne {n : } {m : } :
n mbit0 n bit0 m
theorem Nat.bit1_ne {n : } {m : } :
n mbit1 n bit1 m
theorem Nat.zero_ne_bit0 {n : } :
n 00 bit0 n
theorem Nat.zero_ne_bit1 (n : ) :
0 bit1 n
theorem Nat.one_ne_bit0 (n : ) :
1 bit0 n
theorem Nat.one_ne_bit1 {n : } :
n 01 bit1 n
theorem Nat.one_lt_bit1 {n : } :
n 01 < bit1 n
theorem Nat.one_lt_bit0 {n : } :
n 01 < bit0 n
theorem Nat.bit0_lt {n : } {m : } (h : n < m) :
bit0 n < bit0 m
theorem Nat.bit1_lt {n : } {m : } (h : n < m) :
bit1 n < bit1 m
theorem Nat.bit0_lt_bit1 {n : } {m : } (h : n m) :
bit0 n < bit1 m
theorem Nat.bit1_lt_bit0 {n : } {m : } :
n < mbit1 n < bit0 m
theorem Nat.one_le_bit1 (n : ) :
1 bit1 n
theorem Nat.one_le_bit0 (n : ) :
n 01 bit0 n

successor and predecessor

def Nat.discriminate {B : Sort u} {n : } (H1 : n = 0B) (H2 : (m : ) → n = Nat.succ mB) :
B
Equations
  • One or more equations did not get rendered due to their size.

subtraction

Many lemmas are proven more generally in mathlib algebra/order/sub

min

induction principles

def Nat.twoStepInduction {P : Sort u} (H1 : P 0) (H2 : P 1) (H3 : (n : ) → P nP (Nat.succ n)P (Nat.succ (Nat.succ n))) (a : ) :
P a
Equations
def Nat.subInduction {P : Sort u} (H1 : (m : ) → P 0 m) (H2 : (n : ) → P (Nat.succ n) 0) (H3 : (n m : ) → P n mP (Nat.succ n) (Nat.succ m)) (n : ) (m : ) :
P n m
Equations
theorem Nat.strong_induction_on {p : Prop} (n : ) (h : ∀ (n : ), (∀ (m : ), m < np m)p n) :
p n
theorem Nat.case_strong_induction_on {p : Prop} (a : ) (hz : p 0) (hi : ∀ (n : ), (∀ (m : ), m np m)p (Nat.succ n)) :
p a

mod

theorem Nat.cond_decide_mod_two (x : ) [d : Decidable (x % 2 = 1)] :
(bif decide (x % 2 = 1) then 1 else 0) = x % 2

div

dvd

find

def Nat.findX {p : Prop} [DecidablePred p] (H : ∃ (n : ), p n) :
{ n : // p n ∀ (m : ), m < n¬p m }
Equations
  • One or more equations did not get rendered due to their size.
def Nat.find {p : Prop} [DecidablePred p] (H : ∃ (n : ), p n) :

If p is a (decidable) predicate on and hp : ∃ (n : ℕ), p n is a proof that there exists some natural number satisfying p, then Nat.find hp is the smallest natural number satisfying p. Note that Nat.find is protected, meaning that you can't just write find, even if the Nat namespace is open.

The API for Nat.find is:

Equations
theorem Nat.find_spec {p : Prop} [DecidablePred p] (H : ∃ (n : ), p n) :
p (Nat.find H)
theorem Nat.find_min {p : Prop} [DecidablePred p] (H : ∃ (n : ), p n) {m : } :
m < Nat.find H¬p m
theorem Nat.find_min' {p : Prop} [DecidablePred p] (H : ∃ (n : ), p n) {m : } (h : p m) :