Results on finitely supported functions. #
The tensor product of ι →₀ M
and κ →₀ N
is linearly equivalent to (ι × κ) →₀ (M ⊗ N)
.
def
finsuppTensorFinsupp
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
TensorProduct R (ι →₀ M) (κ →₀ N) ≃ₗ[R] ι × κ →₀ TensorProduct R M N
The tensor product of ι →₀ M
and κ →₀ N
is linearly equivalent to (ι × κ) →₀ (M ⊗ N)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
finsuppTensorFinsupp_single
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(i : ι)
(m : M)
(k : κ)
(n : N)
:
(finsuppTensorFinsupp R M N ι κ) (Finsupp.single i m ⊗ₜ[R] Finsupp.single k n) = Finsupp.single (i, k) (m ⊗ₜ[R] n)
@[simp]
theorem
finsuppTensorFinsupp_apply
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(f : ι →₀ M)
(g : κ →₀ N)
(i : ι)
(k : κ)
:
@[simp]
theorem
finsuppTensorFinsupp_symm_single
(R : Type u_1)
(M : Type u_2)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(i : ι × κ)
(m : M)
(n : N)
:
(LinearEquiv.symm (finsuppTensorFinsupp R M N ι κ)) (Finsupp.single i (m ⊗ₜ[R] n)) = Finsupp.single i.1 m ⊗ₜ[R] Finsupp.single i.2 n
def
finsuppTensorFinsuppLid
(R : Type u_1)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid N]
[Module R N]
:
A variant of finsuppTensorFinsupp
where the first module is the ground ring.
Equations
- finsuppTensorFinsuppLid R N ι κ = LinearEquiv.trans (finsuppTensorFinsupp R R N ι κ) (Finsupp.lcongr (Equiv.refl (ι × κ)) (TensorProduct.lid R N))
Instances For
@[simp]
theorem
finsuppTensorFinsuppLid_apply_apply
(R : Type u_1)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid N]
[Module R N]
(f : ι →₀ R)
(g : κ →₀ N)
(a : ι)
(b : κ)
:
((finsuppTensorFinsuppLid R N ι κ) (f ⊗ₜ[R] g)) (a, b) = f a • g b
@[simp]
theorem
finsuppTensorFinsuppLid_single_tmul_single
(R : Type u_1)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid N]
[Module R N]
(a : ι)
(b : κ)
(r : R)
(n : N)
:
(finsuppTensorFinsuppLid R N ι κ) (Finsupp.single a r ⊗ₜ[R] Finsupp.single b n) = Finsupp.single (a, b) (r • n)
@[simp]
theorem
finsuppTensorFinsuppLid_symm_single_smul
(R : Type u_1)
(N : Type u_3)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid N]
[Module R N]
(i : ι × κ)
(r : R)
(n : N)
:
(LinearEquiv.symm (finsuppTensorFinsuppLid R N ι κ)) (Finsupp.single i (r • n)) = Finsupp.single i.1 r ⊗ₜ[R] Finsupp.single i.2 n
def
finsuppTensorFinsuppRid
(R : Type u_1)
(M : Type u_2)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
A variant of finsuppTensorFinsupp
where the second module is the ground ring.
Equations
- finsuppTensorFinsuppRid R M ι κ = LinearEquiv.trans (finsuppTensorFinsupp R M R ι κ) (Finsupp.lcongr (Equiv.refl (ι × κ)) (TensorProduct.rid R M))
Instances For
@[simp]
theorem
finsuppTensorFinsuppRid_apply_apply
(R : Type u_1)
(M : Type u_2)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(f : ι →₀ M)
(g : κ →₀ R)
(a : ι)
(b : κ)
:
((finsuppTensorFinsuppRid R M ι κ) (f ⊗ₜ[R] g)) (a, b) = g b • f a
@[simp]
theorem
finsuppTensorFinsuppRid_single_tmul_single
(R : Type u_1)
(M : Type u_2)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(a : ι)
(b : κ)
(m : M)
(r : R)
:
(finsuppTensorFinsuppRid R M ι κ) (Finsupp.single a m ⊗ₜ[R] Finsupp.single b r) = Finsupp.single (a, b) (r • m)
@[simp]
theorem
finsuppTensorFinsuppRid_symm_single_smul
(R : Type u_1)
(M : Type u_2)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(i : ι × κ)
(m : M)
(r : R)
:
(LinearEquiv.symm (finsuppTensorFinsuppRid R M ι κ)) (Finsupp.single i (r • m)) = Finsupp.single i.1 m ⊗ₜ[R] Finsupp.single i.2 r
A variant of finsuppTensorFinsupp
where both modules are the ground ring.
Equations
- finsuppTensorFinsupp' R ι κ = finsuppTensorFinsuppLid R R ι κ
Instances For
@[simp]
theorem
finsuppTensorFinsupp'_apply_apply
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
(f : ι →₀ R)
(g : κ →₀ R)
(a : ι)
(b : κ)
:
((finsuppTensorFinsupp' R ι κ) (f ⊗ₜ[R] g)) (a, b) = f a * g b
@[simp]
theorem
finsuppTensorFinsupp'_single_tmul_single
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
(a : ι)
(b : κ)
(r₁ : R)
(r₂ : R)
:
(finsuppTensorFinsupp' R ι κ) (Finsupp.single a r₁ ⊗ₜ[R] Finsupp.single b r₂) = Finsupp.single (a, b) (r₁ * r₂)
theorem
finsuppTensorFinsupp'_symm_single_mul
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
(i : ι × κ)
(r₁ : R)
(r₂ : R)
:
(LinearEquiv.symm (finsuppTensorFinsupp' R ι κ)) (Finsupp.single i (r₁ * r₂)) = Finsupp.single i.1 r₁ ⊗ₜ[R] Finsupp.single i.2 r₂
theorem
finsuppTensorFinsupp'_symm_single_eq_single_one_tmul
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
(i : ι × κ)
(r : R)
:
(LinearEquiv.symm (finsuppTensorFinsupp' R ι κ)) (Finsupp.single i r) = Finsupp.single i.1 1 ⊗ₜ[R] Finsupp.single i.2 r
theorem
finsuppTensorFinsupp'_symm_single_eq_tmul_single_one
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
(i : ι × κ)
(r : R)
:
(LinearEquiv.symm (finsuppTensorFinsupp' R ι κ)) (Finsupp.single i r) = Finsupp.single i.1 r ⊗ₜ[R] Finsupp.single i.2 1
theorem
finsuppTensorFinsuppLid_self
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
:
finsuppTensorFinsuppLid R R ι κ = finsuppTensorFinsupp' R ι κ
theorem
finsuppTensorFinsuppRid_self
(R : Type u_1)
(ι : Type u_4)
(κ : Type u_5)
[CommSemiring R]
:
finsuppTensorFinsuppRid R R ι κ = finsuppTensorFinsupp' R ι κ