Documentation

Mathlib.MeasureTheory.Function.LpSpace

Lp space #

This file provides the space Lp E p μ as the subtype of elements of α →ₘ[μ] E (see ae_eq_fun) such that snorm f p μ is finite. For 1 ≤ p, snorm defines a norm and Lp is a complete metric space.

Main definitions #

Lipschitz functions vanishing at zero act by composition on Lp. We define this action, and prove that it is continuous. In particular,

When α is a topological space equipped with a finite Borel measure, there is a bounded linear map from the normed space of bounded continuous functions (α →ᵇ E) to Lp E p μ. We construct this as BoundedContinuousFunction.toLp.

Notations #

Implementation #

Since Lp is defined as an AddSubgroup, dot notation does not work. Use Lp.Measurable f to say that the coercion of f to a genuine function is measurable, instead of the non-working f.Measurable.

To prove that two Lp elements are equal, it suffices to show that their coercions to functions coincide almost everywhere (this is registered as an ext rule). This can often be done using filter_upwards. For instance, a proof from first principles that f + (g + h) = (f + g) + h could read (in the Lp namespace)

example (f g h : Lp E p μ) : (f + g) + h = f + (g + h) := by
  ext1
  filter_upwards [coeFn_add (f + g) h, coeFn_add f g, coeFn_add f (g + h), coeFn_add g h]
    with _ ha1 ha2 ha3 ha4
  simp only [ha1, ha2, ha3, ha4, add_assoc]

The lemma coeFn_add states that the coercion of f + g coincides almost everywhere with the sum of the coercions of f and g. All such lemmas use coeFn in their name, to distinguish the function coercion from the coercion to almost everywhere defined functions.

Lp space #

The space of equivalence classes of measurable functions for which snorm f p μ < ∞.

Lp space

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def MeasureTheory.Memℒp.toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) (h_mem_ℒp : MeasureTheory.Memℒp f p μ) :
        (MeasureTheory.Lp E p μ)

        make an element of Lp from a function verifying Memℒp

        Equations
        Instances For
          theorem MeasureTheory.Memℒp.toLp_congr {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.Memℒp g p μ) (hfg : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
          theorem MeasureTheory.Memℒp.toLp_add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.Memℒp g p μ) :
          theorem MeasureTheory.Memℒp.toLp_sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : αE} (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.Memℒp g p μ) :
          instance MeasureTheory.Lp.instCoeFun {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          CoeFun (MeasureTheory.Lp E p μ) fun (x : (MeasureTheory.Lp E p μ)) => αE
          Equations
          • MeasureTheory.Lp.instCoeFun = { coe := fun (f : (MeasureTheory.Lp E p μ)) => f }
          theorem MeasureTheory.Lp.ext {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : (MeasureTheory.Lp E p μ)} {g : (MeasureTheory.Lp E p μ)} (h : f =ᶠ[MeasureTheory.Measure.ae μ] g) :
          f = g
          theorem MeasureTheory.Lp.ext_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : (MeasureTheory.Lp E p μ)} {g : (MeasureTheory.Lp E p μ)} :
          f = g f =ᶠ[MeasureTheory.Measure.ae μ] g
          @[simp]
          theorem MeasureTheory.Lp.coeFn_mk {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} (hf : MeasureTheory.snorm (f) p μ < ) :
          { val := f, property := hf } = f
          theorem MeasureTheory.Lp.coe_mk {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} (hf : MeasureTheory.snorm (f) p μ < ) :
          { val := f, property := hf } = f
          @[simp]
          theorem MeasureTheory.Lp.toLp_coeFn {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (hf : MeasureTheory.Memℒp (f) p μ) :
          theorem MeasureTheory.Lp.snorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          MeasureTheory.snorm (f) p μ <
          theorem MeasureTheory.Lp.snorm_ne_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          MeasureTheory.snorm (f) p μ
          theorem MeasureTheory.Lp.memℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          MeasureTheory.Memℒp (f) p μ
          theorem MeasureTheory.Lp.coeFn_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          theorem MeasureTheory.Lp.coeFn_add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          (f + g) =ᶠ[MeasureTheory.Measure.ae μ] f + g
          theorem MeasureTheory.Lp.coeFn_sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          (f - g) =ᶠ[MeasureTheory.Measure.ae μ] f - g
          instance MeasureTheory.Lp.instNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          Equations
          instance MeasureTheory.Lp.instNNNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          Equations
          • MeasureTheory.Lp.instNNNorm = { nnnorm := fun (f : (MeasureTheory.Lp E p μ)) => { val := f, property := } }
          instance MeasureTheory.Lp.instDist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          Equations
          instance MeasureTheory.Lp.instEDist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          Equations
          theorem MeasureTheory.Lp.norm_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          f = (MeasureTheory.snorm (f) p μ).toReal
          theorem MeasureTheory.Lp.nnnorm_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          f‖₊ = (MeasureTheory.snorm (f) p μ).toNNReal
          @[simp]
          theorem MeasureTheory.Lp.coe_nnnorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_coe_ennreal {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          f‖₊ = MeasureTheory.snorm (f) p μ
          @[simp]
          theorem MeasureTheory.Lp.norm_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) (hf : MeasureTheory.Memℒp f p μ) :
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) (hf : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.Lp.dist_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          dist f g = (MeasureTheory.snorm (f - g) p μ).toReal
          theorem MeasureTheory.Lp.edist_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          edist f g = MeasureTheory.snorm (f - g) p μ
          theorem MeasureTheory.Lp.edist_dist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          theorem MeasureTheory.Lp.dist_edist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (g : (MeasureTheory.Lp E p μ)) :
          dist f g = (edist f g).toReal
          @[simp]
          theorem MeasureTheory.Lp.edist_toLp_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) (g : αE) (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.Memℒp g p μ) :
          @[simp]
          theorem MeasureTheory.Lp.edist_toLp_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) (hf : MeasureTheory.Memℒp f p μ) :
          @[simp]
          @[simp]
          theorem MeasureTheory.Lp.norm_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          @[simp]
          theorem MeasureTheory.Lp.norm_measure_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p 0)) :
          @[simp]
          theorem MeasureTheory.Lp.norm_exponent_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E 0 μ)) :
          theorem MeasureTheory.Lp.nnnorm_eq_zero_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : (MeasureTheory.Lp E p μ)} (hp : 0 < p) :
          f‖₊ = 0 f = 0
          theorem MeasureTheory.Lp.norm_eq_zero_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : (MeasureTheory.Lp E p μ)} (hp : 0 < p) :
          f = 0 f = 0
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          @[simp]
          theorem MeasureTheory.Lp.norm_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) :
          theorem MeasureTheory.Lp.nnnorm_le_mul_nnnorm_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : NNReal} {f : (MeasureTheory.Lp E p μ)} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
          theorem MeasureTheory.Lp.norm_le_mul_norm_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : } {f : (MeasureTheory.Lp E p μ)} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x c * g x) :
          theorem MeasureTheory.Lp.norm_le_norm_of_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : (MeasureTheory.Lp E p μ)} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.Lp.mem_Lp_of_nnnorm_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : NNReal} {f : α →ₘ[μ] E} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
          theorem MeasureTheory.Lp.mem_Lp_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : } {f : α →ₘ[μ] E} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x c * g x) :
          theorem MeasureTheory.Lp.mem_Lp_of_nnnorm_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : α →ₘ[μ] E} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.Lp.mem_Lp_of_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : α →ₘ[μ] E} {g : (MeasureTheory.Lp F p μ)} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
          theorem MeasureTheory.Lp.mem_Lp_of_ae_nnnorm_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : α →ₘ[μ] E} (C : NNReal) (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
          theorem MeasureTheory.Lp.mem_Lp_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : α →ₘ[μ] E} (C : ) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          theorem MeasureTheory.Lp.nnnorm_le_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : (MeasureTheory.Lp E p μ)} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
          theorem MeasureTheory.Lp.norm_le_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : (MeasureTheory.Lp E p μ)} {C : } (hC : 0 C) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
          Equations
          • One or more equations did not get rendered due to their size.
          theorem MeasureTheory.Lp.const_smul_mem_Lp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (c : 𝕜) (f : (MeasureTheory.Lp E p μ)) :
          c f MeasureTheory.Lp E p μ
          def MeasureTheory.Lp.LpSubmodule {α : Type u_1} (E : Type u_2) {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
          Submodule 𝕜 (α →ₘ[μ] E)

          The 𝕜-submodule of elements of α →ₘ[μ] E whose Lp norm is finite. This is Lp E p μ, with extra structure.

          Equations
          Instances For
            instance MeasureTheory.Lp.instModule {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
            Module 𝕜 (MeasureTheory.Lp E p μ)
            Equations
            theorem MeasureTheory.Lp.coeFn_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (c : 𝕜) (f : (MeasureTheory.Lp E p μ)) :
            (c f) =ᶠ[MeasureTheory.Measure.ae μ] c f
            instance MeasureTheory.Lp.instIsCentralScalar {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Module 𝕜ᵐᵒᵖ E] [BoundedSMul 𝕜ᵐᵒᵖ E] [IsCentralScalar 𝕜 E] :
            Equations
            • =
            instance MeasureTheory.Lp.instSMulCommClass {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} {𝕜' : Type u_6} [NormedRing 𝕜] [NormedRing 𝕜'] [Module 𝕜 E] [Module 𝕜' E] [BoundedSMul 𝕜 E] [BoundedSMul 𝕜' E] [SMulCommClass 𝕜 𝕜' E] :
            SMulCommClass 𝕜 𝕜' (MeasureTheory.Lp E p μ)
            Equations
            • =
            instance MeasureTheory.Lp.instIsScalarTower {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} {𝕜' : Type u_6} [NormedRing 𝕜] [NormedRing 𝕜'] [Module 𝕜 E] [Module 𝕜' E] [BoundedSMul 𝕜 E] [BoundedSMul 𝕜' E] [SMul 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] :
            IsScalarTower 𝕜 𝕜' (MeasureTheory.Lp E p μ)
            Equations
            • =
            instance MeasureTheory.Lp.instBoundedSMul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] :
            BoundedSMul 𝕜 (MeasureTheory.Lp E p μ)
            Equations
            • =
            instance MeasureTheory.Lp.instNormedSpace {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
            NormedSpace 𝕜 (MeasureTheory.Lp E p μ)
            Equations
            theorem MeasureTheory.Memℒp.toLp_const_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (c : 𝕜) (hf : MeasureTheory.Memℒp f p μ) :

            Indicator of a set as an element of Lᵖ #

            For a set s with (hs : MeasurableSet s) and (hμs : μ s < ∞), we build indicatorConstLp p hs hμs c, the element of Lp corresponding to s.indicator (fun _ => c).

            theorem MeasureTheory.snormEssSup_indicator_const_le {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) :
            theorem MeasureTheory.snormEssSup_indicator_const_eq {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) (hμs : μ s 0) :
            MeasureTheory.snormEssSup (Set.indicator s fun (x : α) => c) μ = c‖₊
            theorem MeasureTheory.snorm_indicator_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : αE) {s : Set α} :
            theorem MeasureTheory.snorm_indicator_const₀ {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {s : Set α} {c : G} (hs : MeasureTheory.NullMeasurableSet s μ) (hp : p 0) (hp_top : p ) :
            MeasureTheory.snorm (Set.indicator s fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)
            theorem MeasureTheory.snorm_indicator_const {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {s : Set α} {c : G} (hs : MeasurableSet s) (hp : p 0) (hp_top : p ) :
            MeasureTheory.snorm (Set.indicator s fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)
            theorem MeasureTheory.snorm_indicator_const' {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {s : Set α} {c : G} (hs : MeasurableSet s) (hμs : μ s 0) (hp : p 0) :
            MeasureTheory.snorm (Set.indicator s fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)
            theorem MeasureTheory.snorm_indicator_const_le {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {s : Set α} (c : G) (p : ENNReal) :
            MeasureTheory.snorm (Set.indicator s fun (x : α) => c) p μ c‖₊ * μ s ^ (1 / p.toReal)
            theorem MeasureTheory.Memℒp.indicator {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {s : Set α} (hs : MeasurableSet s) (hf : MeasureTheory.Memℒp f p μ) :
            theorem MeasureTheory.Memℒp.memℒp_of_exponent_le_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : ENNReal} {q : ENNReal} {f : αE} (hfq : MeasureTheory.Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :

            If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

            theorem MeasureTheory.memℒp_indicator_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (c : E) (hμsc : c = 0 μ s ) :
            MeasureTheory.Memℒp (Set.indicator s fun (x : α) => c) p μ
            theorem MeasureTheory.exists_snorm_indicator_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hp : p ) (c : E) {ε : ENNReal} (hε : ε 0) :
            ∃ (η : NNReal), 0 < η ∀ (s : Set α), μ s ηMeasureTheory.snorm (Set.indicator s fun (x : α) => c) p μ ε

            The ℒ^p norm of the indicator of a set is uniformly small if the set itself has small measure, for any p < ∞. Given here as an existential ∀ ε > 0, ∃ η > 0, ... to avoid later management of ℝ≥0∞-arithmetic.

            theorem MeasureTheory.Memℒp.piecewise {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {s : Set α} {g : αE} [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) (hf : MeasureTheory.Memℒp f p (MeasureTheory.Measure.restrict μ s)) (hg : MeasureTheory.Memℒp g p (MeasureTheory.Measure.restrict μ s)) :
            def MeasureTheory.indicatorConstLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (hμs : μ s ) (c : E) :
            (MeasureTheory.Lp E p μ)

            Indicator of a set as an element of Lp.

            Equations
            Instances For
              theorem MeasureTheory.indicatorConstLp_coeFn {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              theorem MeasureTheory.indicatorConstLp_coeFn_mem {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              ∀ᵐ (x : α) ∂μ, x s(MeasureTheory.indicatorConstLp p hs hμs c) x = c
              theorem MeasureTheory.indicatorConstLp_coeFn_nmem {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              ∀ᵐ (x : α) ∂μ, xs(MeasureTheory.indicatorConstLp p hs hμs c) x = 0
              theorem MeasureTheory.norm_indicatorConstLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
              MeasureTheory.indicatorConstLp p hs hμs c = c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.norm_indicatorConstLp_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hμs_ne_zero : μ s 0) :
              theorem MeasureTheory.norm_indicatorConstLp' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hp_pos : p 0) (hμs_pos : μ s 0) :
              MeasureTheory.indicatorConstLp p hs hμs c = c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.norm_indicatorConstLp_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              MeasureTheory.indicatorConstLp p hs hμs c c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.edist_indicatorConstLp_eq_nnnorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
              theorem MeasureTheory.dist_indicatorConstLp_eq_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} {t : Set α} (ht : MeasurableSet t) (hμt : μ t ) :
              @[simp]
              theorem MeasureTheory.indicatorConstLp_disjoint_union {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} {t : Set α} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (c : E) :

              The indicator of a disjoint union of two sets is the sum of the indicators of the sets.

              Constant function as an element of MeasureTheory.Lp for a finite measure.

              Equations
              Instances For
                @[simp]
                theorem MeasureTheory.Lp.norm_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (c : E) [NeZero μ] (hp_zero : p 0) :
                (MeasureTheory.Lp.const p μ) c = c * (μ Set.univ).toReal ^ (1 / p.toReal)
                theorem MeasureTheory.Lp.norm_const' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (c : E) (hp_zero : p 0) (hp_top : p ) :
                (MeasureTheory.Lp.const p μ) c = c * (μ Set.univ).toReal ^ (1 / p.toReal)
                theorem MeasureTheory.Lp.norm_const_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (c : E) :
                (MeasureTheory.Lp.const p μ) c c * (μ Set.univ).toReal ^ (1 / p.toReal)
                @[simp]
                theorem MeasureTheory.Lp.constₗ_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (a : E) :
                def MeasureTheory.Lp.constₗ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
                E →ₗ[𝕜] (MeasureTheory.Lp E p μ)

                MeasureTheory.Lp.const as a LinearMap.

                Equations
                Instances For
                  @[simp]
                  theorem MeasureTheory.Lp.constL_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] (a : E) :
                  def MeasureTheory.Lp.constL {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
                  E →L[𝕜] (MeasureTheory.Lp E p μ)
                  Equations
                  Instances For
                    theorem MeasureTheory.Lp.norm_constL_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
                    MeasureTheory.Lp.constL p μ 𝕜 (μ Set.univ).toReal ^ (1 / p.toReal)
                    theorem MeasureTheory.Memℒp.norm_rpow_div {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.Memℒp f p μ) (q : ENNReal) :
                    MeasureTheory.Memℒp (fun (x : α) => f x ^ q.toReal) (p / q) μ
                    theorem MeasureTheory.memℒp_norm_rpow_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {q : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (q_zero : q 0) (q_top : q ) :
                    MeasureTheory.Memℒp (fun (x : α) => f x ^ q.toReal) (p / q) μ MeasureTheory.Memℒp f p μ
                    theorem MeasureTheory.Memℒp.norm_rpow {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.Memℒp f p μ) (hp_ne_zero : p 0) (hp_ne_top : p ) :
                    MeasureTheory.Memℒp (fun (x : α) => f x ^ p.toReal) 1 μ

                    Composition with a measure preserving function #

                    def MeasureTheory.Lp.compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                    (MeasureTheory.Lp E p μb) →+ (MeasureTheory.Lp E p μ)

                    Composition of an L^p function with a measure preserving function is an L^p function.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem MeasureTheory.Lp.compMeasurePreservingₗ_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                      def MeasureTheory.Lp.compMeasurePreservingₗ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                      (MeasureTheory.Lp E p μb) →ₗ[𝕜] (MeasureTheory.Lp E p μ)

                      MeasureTheory.Lp.compMeasurePreserving as a linear map.

                      Equations
                      Instances For
                        @[simp]
                        theorem MeasureTheory.Lp.compMeasurePreservingₗᵢ_apply_coe {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                        @[simp]
                        theorem MeasureTheory.Lp.compMeasurePreservingₗᵢ_toFun_coe {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                        def MeasureTheory.Lp.compMeasurePreservingₗᵢ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : MeasureTheory.Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] (f : αβ) (hf : MeasureTheory.MeasurePreserving f μ μb) :
                        (MeasureTheory.Lp E p μb) →ₗᵢ[𝕜] (MeasureTheory.Lp E p μ)

                        MeasureTheory.Lp.compMeasurePreserving as a linear isometry.

                        Equations
                        Instances For

                          Composition on L^p #

                          We show that Lipschitz functions vanishing at zero act by composition on L^p, and specialize this to the composition with continuous linear maps, and to the definition of the positive part of an L^p function.

                          theorem LipschitzWith.comp_memℒp {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K : NNReal} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hg : LipschitzWith K g) (g0 : g 0 = 0) (hL : MeasureTheory.Memℒp f p μ) :
                          theorem MeasureTheory.Memℒp.of_comp_antilipschitzWith {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K' : NNReal} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hL : MeasureTheory.Memℒp (g f) p μ) (hg : UniformContinuous g) (hg' : AntilipschitzWith K' g) (g0 : g 0 = 0) :
                          theorem LipschitzWith.memℒp_comp_iff_of_antilipschitz {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K : NNReal} {K' : NNReal} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hg : LipschitzWith K g) (hg' : AntilipschitzWith K' g) (g0 : g 0 = 0) :
                          def LipschitzWith.compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                          (MeasureTheory.Lp F p μ)

                          When g is a Lipschitz function sending 0 to 0 and f is in Lp, then g ∘ f is well defined as an element of Lp.

                          Equations
                          Instances For
                            theorem LipschitzWith.coeFn_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                            @[simp]
                            theorem LipschitzWith.compLp_zero {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            theorem LipschitzWith.norm_compLp_sub_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) (f' : (MeasureTheory.Lp E p μ)) :
                            theorem LipschitzWith.norm_compLp_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                            theorem LipschitzWith.lipschitzWith_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} [Fact (1 p)] (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            theorem LipschitzWith.continuous_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} [Fact (1 p)] (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            def ContinuousLinearMap.compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                            (MeasureTheory.Lp F p μ)

                            Composing f : Lp with L : E →L[𝕜] F.

                            Equations
                            Instances For
                              theorem ContinuousLinearMap.coeFn_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              ∀ᵐ (a : α) ∂μ, (ContinuousLinearMap.compLp L f) a = L (f a)
                              theorem ContinuousLinearMap.coeFn_compLp' {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              (ContinuousLinearMap.compLp L f) =ᶠ[MeasureTheory.Measure.ae μ] fun (a : α) => L (f a)
                              theorem ContinuousLinearMap.comp_memℒp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              MeasureTheory.Memℒp (L f) p μ
                              theorem ContinuousLinearMap.comp_memℒp' {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
                              theorem MeasureTheory.Memℒp.ofReal {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {K : Type u_6} [RCLike K] {f : α} (hf : MeasureTheory.Memℒp f p μ) :
                              MeasureTheory.Memℒp (fun (x : α) => (f x)) p μ
                              theorem MeasureTheory.memℒp_re_im_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {K : Type u_6} [RCLike K] {f : αK} :
                              MeasureTheory.Memℒp (fun (x : α) => RCLike.re (f x)) p μ MeasureTheory.Memℒp (fun (x : α) => RCLike.im (f x)) p μ MeasureTheory.Memℒp f p μ
                              theorem ContinuousLinearMap.add_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (L' : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              theorem ContinuousLinearMap.smul_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {𝕜' : Type u_6} [NormedRing 𝕜'] [Module 𝕜' F] [BoundedSMul 𝕜' F] [SMulCommClass 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              theorem ContinuousLinearMap.norm_compLp_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              def ContinuousLinearMap.compLpₗ {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) :
                              (MeasureTheory.Lp E p μ) →ₗ[𝕜] (MeasureTheory.Lp F p μ)

                              Composing f : Lp E p μ with L : E →L[𝕜] F, seen as a 𝕜-linear map on Lp E p μ.

                              Equations
                              Instances For
                                def ContinuousLinearMap.compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) :
                                (MeasureTheory.Lp E p μ) →L[𝕜] (MeasureTheory.Lp F p μ)

                                Composing f : Lp E p μ with L : E →L[𝕜] F, seen as a continuous 𝕜-linear map on Lp E p μ. See also the similar

                                Equations
                                Instances For
                                  theorem ContinuousLinearMap.coeFn_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                                  ((ContinuousLinearMap.compLpL p μ L) f) =ᶠ[MeasureTheory.Measure.ae μ] fun (a : α) => L (f a)
                                  theorem ContinuousLinearMap.add_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) (L' : E →L[𝕜] F) :
                                  theorem ContinuousLinearMap.smul_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] {𝕜' : Type u_6} [NormedRing 𝕜'] [Module 𝕜' F] [BoundedSMul 𝕜' F] [SMulCommClass 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) :
                                  theorem ContinuousLinearMap.norm_compLpL_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) :
                                  theorem MeasureTheory.Memℒp.pos_part {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {f : α} (hf : MeasureTheory.Memℒp f p μ) :
                                  MeasureTheory.Memℒp (fun (x : α) => max (f x) 0) p μ
                                  theorem MeasureTheory.Memℒp.neg_part {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {f : α} (hf : MeasureTheory.Memℒp f p μ) :
                                  MeasureTheory.Memℒp (fun (x : α) => max (-f x) 0) p μ
                                  def MeasureTheory.Lp.negPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} (f : (MeasureTheory.Lp p μ)) :

                                  Negative part of a function in L^p.

                                  Equations
                                  Instances For
                                    theorem MeasureTheory.Lp.coeFn_posPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} (f : (MeasureTheory.Lp p μ)) :
                                    (MeasureTheory.Lp.posPart f) =ᶠ[MeasureTheory.Measure.ae μ] fun (a : α) => max (f a) 0
                                    theorem MeasureTheory.Lp.coeFn_negPart_eq_max {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} (f : (MeasureTheory.Lp p μ)) :
                                    ∀ᵐ (a : α) ∂μ, (MeasureTheory.Lp.negPart f) a = max (-f a) 0
                                    theorem MeasureTheory.Lp.coeFn_negPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} (f : (MeasureTheory.Lp p μ)) :
                                    ∀ᵐ (a : α) ∂μ, (MeasureTheory.Lp.negPart f) a = -min (f a) 0

                                    L^p is a complete space #

                                    We show that L^p is a complete space for 1 ≤ p.

                                    theorem MeasureTheory.Lp.snorm'_lim_eq_lintegral_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {p : } (hp_nonneg : 0 p) {f_lim : αG} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    MeasureTheory.snorm' f_lim p μ = (∫⁻ (a : α), Filter.liminf (fun (m : ι) => f m a‖₊ ^ p) Filter.atTopμ) ^ (1 / p)
                                    theorem MeasureTheory.Lp.snorm'_lim_le_liminf_snorm' {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} {p : } (hp_pos : 0 < p) (hf : ∀ (n : ), MeasureTheory.AEStronglyMeasurable (f n) μ) {f_lim : αE} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    MeasureTheory.snorm' f_lim p μ Filter.liminf (fun (n : ) => MeasureTheory.snorm' (f n) p μ) Filter.atTop
                                    theorem MeasureTheory.Lp.snorm_exponent_top_lim_eq_essSup_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {f_lim : αG} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    MeasureTheory.snorm f_lim μ = essSup (fun (x : α) => Filter.liminf (fun (m : ι) => f m x‖₊) Filter.atTop) μ
                                    theorem MeasureTheory.Lp.snorm_exponent_top_lim_le_liminf_snorm_exponent_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {ι : Type u_5} [Nonempty ι] [Countable ι] [LinearOrder ι] {f : ιαF} {f_lim : αF} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    MeasureTheory.snorm f_lim μ Filter.liminf (fun (n : ι) => MeasureTheory.snorm (f n) μ) Filter.atTop
                                    theorem MeasureTheory.Lp.snorm_lim_le_liminf_snorm {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), MeasureTheory.AEStronglyMeasurable (f n) μ) (f_lim : αE) (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    MeasureTheory.snorm f_lim p μ Filter.liminf (fun (n : ) => MeasureTheory.snorm (f n) p μ) Filter.atTop

                                    Lp is complete iff Cauchy sequences of ℒp have limits in ℒp #

                                    theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ι(MeasureTheory.Lp E p μ)) (f_lim : (MeasureTheory.Lp E p μ)) :
                                    Filter.Tendsto f fi (nhds f_lim) Filter.Tendsto (fun (n : ι) => MeasureTheory.snorm ((f n) - f_lim) p μ) fi (nhds 0)
                                    theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ι(MeasureTheory.Lp E p μ)) (f_lim : αE) (f_lim_ℒp : MeasureTheory.Memℒp f_lim p μ) :
                                    Filter.Tendsto f fi (nhds (MeasureTheory.Memℒp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => MeasureTheory.snorm ((f n) - f_lim) p μ) fi (nhds 0)
                                    theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp'' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ιαE) (f_ℒp : ∀ (n : ι), MeasureTheory.Memℒp (f n) p μ) (f_lim : αE) (f_lim_ℒp : MeasureTheory.Memℒp f_lim p μ) :
                                    Filter.Tendsto (fun (n : ι) => MeasureTheory.Memℒp.toLp (f n) ) fi (nhds (MeasureTheory.Memℒp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => MeasureTheory.snorm (f n - f_lim) p μ) fi (nhds 0)
                                    theorem MeasureTheory.Lp.tendsto_Lp_of_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] {f : ι(MeasureTheory.Lp E p μ)} (f_lim : αE) (f_lim_ℒp : MeasureTheory.Memℒp f_lim p μ) (h_tendsto : Filter.Tendsto (fun (n : ι) => MeasureTheory.snorm ((f n) - f_lim) p μ) fi (nhds 0)) :
                                    theorem MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {ι : Type u_5} [Nonempty ι] [SemilatticeSup ι] [hp : Fact (1 p)] (f : ι(MeasureTheory.Lp E p μ)) :
                                    CauchySeq f Filter.Tendsto (fun (n : ι × ι) => MeasureTheory.snorm ((f n.1) - (f n.2)) p μ) Filter.atTop (nhds 0)
                                    theorem MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [hp : Fact (1 p)] (H : ∀ (f : αE), (∀ (n : ), MeasureTheory.Memℒp (f n) p μ)∀ (B : ENNReal), ∑' (i : ), B i < (∀ (N n m : ), N nN mMeasureTheory.snorm (f n - f m) p μ < B N)∃ (f_lim : αE), MeasureTheory.Memℒp f_lim p μ Filter.Tendsto (fun (n : ) => MeasureTheory.snorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :

                                    Prove that controlled Cauchy sequences of ℒp have limits in ℒp #

                                    theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} {p : } (hf : ∀ (n : ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hp1 : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN mMeasureTheory.snorm' (f n - f m) p μ < B N) :
                                    ∀ᵐ (x : α) ∂μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
                                    theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} (hf : ∀ (n : ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hp : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN mMeasureTheory.snorm (f n - f m) p μ < B N) :
                                    ∀ᵐ (x : α) ∂μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
                                    theorem MeasureTheory.Lp.cauchy_tendsto_of_tendsto {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), MeasureTheory.AEStronglyMeasurable (f n) μ) (f_lim : αE) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN mMeasureTheory.snorm (f n - f m) p μ < B N) (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                    Filter.Tendsto (fun (n : ) => MeasureTheory.snorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
                                    theorem MeasureTheory.Lp.memℒp_of_cauchy_tendsto {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MeasureTheory.Memℒp (f n) p μ) (f_lim : αE) (h_lim_meas : MeasureTheory.AEStronglyMeasurable f_lim μ) (h_tendsto : Filter.Tendsto (fun (n : ) => MeasureTheory.snorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
                                    theorem MeasureTheory.Lp.cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [CompleteSpace E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MeasureTheory.Memℒp (f n) p μ) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN mMeasureTheory.snorm (f n - f m) p μ < B N) :
                                    ∃ (f_lim : αE), MeasureTheory.Memℒp f_lim p μ Filter.Tendsto (fun (n : ) => MeasureTheory.snorm (f n - f_lim) p μ) Filter.atTop (nhds 0)

                                    Lp is complete for 1 ≤ p #

                                    Equations
                                    • =

                                    Continuous functions in Lp #

                                    An additive subgroup of Lp E p μ, consisting of the equivalence classes which contain a bounded continuous representative.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      By definition, the elements of Lp.boundedContinuousFunction E p μ are the elements of Lp E p μ which contain a bounded continuous representative.

                                      A bounded continuous function on a finite-measure space is in Lp.

                                      The Lp-norm of a bounded continuous function is at most a constant (depending on the measure of the whole space) times its sup-norm.

                                      The Lp-norm of a bounded continuous function is at most a constant (depending on the measure of the whole space) times its sup-norm.

                                      The normed group homomorphism of considering a bounded continuous function on a finite-measure space as an element of Lp.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The bounded linear map of considering a bounded continuous function on a finite-measure space as an element of Lp.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          The bounded linear map of considering a continuous function on a compact finite-measure space α as an element of Lp. By definition, the norm on C(α, E) is the sup-norm, transferred from the space α →ᵇ E of bounded continuous functions, so this construction is just a matter of transferring the structure from BoundedContinuousFunction.toLp along the isometry.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem ContinuousMap.coe_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : C(α, E)) :
                                            theorem ContinuousMap.hasSum_of_hasSum_Lp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] {β : Type u_6} [MeasureTheory.Measure.IsOpenPosMeasure μ] [NormedField 𝕜] [NormedSpace 𝕜 E] {g : βC(α, E)} {f : C(α, E)} (hg : Summable g) (hg2 : HasSum ((ContinuousMap.toLp p μ 𝕜) g) ((ContinuousMap.toLp p μ 𝕜) f)) :
                                            HasSum g f

                                            If a sum of continuous functions g n is convergent, and the same sum converges in Lᵖ to h, then in fact g n converges uniformly to h.

                                            theorem MeasureTheory.Lp.pow_mul_meas_ge_le_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                            (ε * μ {x : α | ε f x‖₊ ^ p.toReal}) ^ (1 / p.toReal) ENNReal.ofReal f
                                            theorem MeasureTheory.Lp.mul_meas_ge_le_pow_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                            ε * μ {x : α | ε f x‖₊ ^ p.toReal} ENNReal.ofReal f ^ p.toReal
                                            theorem MeasureTheory.Lp.mul_meas_ge_le_pow_norm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                            ε ^ p.toReal * μ {x : α | ε f x‖₊} ENNReal.ofReal f ^ p.toReal

                                            A version of Markov's inequality with elements of Lp.

                                            theorem MeasureTheory.Lp.meas_ge_le_mul_pow_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (f : (MeasureTheory.Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) {ε : ENNReal} (hε : ε 0) :
                                            μ {x : α | ε f x‖₊} ε⁻¹ ^ p.toReal * ENNReal.ofReal f ^ p.toReal