Admissible absolute value on the integers #
This file defines an admissible absolute value AbsoluteValue.absIsAdmissible
which we use to show the class number of the ring of integers of a number field
is finite.
Main results #
AbsoluteValue.absIsAdmissible
shows the "standard" absolute value onℤ
, mapping negativex
to-x
, is admissible.
abs : ℤ → ℤ
is an admissible absolute value.
Equations
- AbsoluteValue.absIsAdmissible = let __src := AbsoluteValue.abs_isEuclidean; { toIsEuclidean := __src, card := fun (ε : ℝ) => ⌈1 / ε⌉₊, exists_partition' := ⋯ }
Instances For
noncomputable instance
AbsoluteValue.instInhabitedIsAdmissibleIntEuclideanDomainAbsToLinearOrderedRingLinearOrderedCommRing :
Inhabited (AbsoluteValue.IsAdmissible AbsoluteValue.abs)