Fractional ideals of number fields #
Prove some results on the fractional ideals of number fields.
Main definitions and results #
NumberField.basisOfFractionalIdeal
: Aℚ
-basis ofK
that spansI
overℤ
whereI
is a fractional ideal of a number fieldK
.NumberField.det_basisOfFractionalIdeal_eq_absNorm
: forI
a fractional ideal of a number fieldK
, the absolute value of the determinant of the base change fromintegralBasis
tobasisOfFractionalIdeal I
is equal to the norm ofI
.
instance
NumberField.instFreeIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringInstSemiringIntAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroup
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Module.Free ℤ ↥↑I
Equations
- ⋯ = ⋯
instance
NumberField.instFiniteIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringInstSemiringIntAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroup
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Module.Finite ℤ ↥↑I
Equations
- ⋯ = ⋯
instance
NumberField.instIsLocalizedModuleIntInstCommSemiringIntNonZeroDivisorsToMonoidWithZeroInstSemiringIntSubtypeMemSubmoduleSubalgebraToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocCommSemiringToNonUnitalNonAssocCommRingToNonUnitalCommRingToModuleToAlgebraToCommSemiringToSemifieldIdSetLikeCoeToSubmoduleNonZeroDivisorsToMonoidWithZeroToSemiringValFractionalIdealToMonoidToSemiringToDivisionSemiringSemifieldInstIsDedekindDomainSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingInstIsFractionRingSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToCommRingToAlgebraToCommSemiringToSemifieldIdAddCommMonoidIntModuleAddCommGroupToRingToAddCommGroupRestrictScalarsModuleIntModuleSubtype
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
IsLocalizedModule (nonZeroDivisors ℤ) (↑ℤ (Submodule.subtype ↑↑I))
Equations
- ⋯ = ⋯
noncomputable def
NumberField.fractionalIdealBasis
(K : Type u_1)
[Field K]
[NumberField K]
(I : FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)
:
Basis (Module.Free.ChooseBasisIndex ℤ ↥↑I) ℤ ↥↑I
A ℤ
-basis of a fractional ideal.
Equations
Instances For
noncomputable def
NumberField.basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
Basis (Module.Free.ChooseBasisIndex ℤ ↥↑↑I) ℚ K
A ℚ
-basis of K
that spans I
over ℤ
, see mem_span_basisOfFractionalIdeal
below.
Equations
Instances For
theorem
NumberField.basisOfFractionalIdeal_apply
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
(i : Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
(NumberField.basisOfFractionalIdeal K I) i = ↑((NumberField.fractionalIdealBasis K ↑I) i)
theorem
NumberField.mem_span_basisOfFractionalIdeal
(K : Type u_1)
[Field K]
[NumberField K]
{I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ}
{x : K}
:
x ∈ Submodule.span ℤ (Set.range ⇑(NumberField.basisOfFractionalIdeal K I)) ↔ x ∈ ↑↑I
theorem
NumberField.fractionalIdeal_rank
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
:
theorem
NumberField.det_basisOfFractionalIdeal_eq_absNorm
(K : Type u_1)
[Field K]
[NumberField K]
(I : (FractionalIdeal (nonZeroDivisors ↥(NumberField.ringOfIntegers K)) K)ˣ)
(e : Module.Free.ChooseBasisIndex ℤ ↥(NumberField.ringOfIntegers K) ≃ Module.Free.ChooseBasisIndex ℤ ↥↑↑I)
:
|(Basis.det (NumberField.integralBasis K)) ⇑(Basis.reindex (NumberField.basisOfFractionalIdeal K I) e.symm)| = FractionalIdeal.absNorm ↑I
The absolute value of the determinant of the base change from integralBasis
to
basisOfFractionalIdeal I
is equal to the norm of I
.