Documentation

Mathlib.Order.Filter.IndicatorFunction

Indicator function and filters #

Properties of additive and multiplicative indicator functions involving =ᶠ and ≤ᶠ.

Tags #

indicator, characteristic, filter

theorem indicator_eventuallyEq {α : Type u_1} {M : Type u_3} [Zero M] {s : Set α} {t : Set α} {f : αM} {g : αM} {l : Filter α} (hf : f =ᶠ[l Filter.principal s] g) (hs : s =ᶠ[l] t) :
theorem mulIndicator_eventuallyEq {α : Type u_1} {M : Type u_3} [One M] {s : Set α} {t : Set α} {f : αM} {g : αM} {l : Filter α} (hf : f =ᶠ[l Filter.principal s] g) (hs : s =ᶠ[l] t) :
theorem indicator_union_eventuallyEq {α : Type u_1} {M : Type u_3} [AddMonoid M] {s : Set α} {t : Set α} {f : αM} {l : Filter α} (h : ∀ᶠ (a : α) in l, as t) :
theorem mulIndicator_union_eventuallyEq {α : Type u_1} {M : Type u_3} [Monoid M] {s : Set α} {t : Set α} {f : αM} {l : Filter α} (h : ∀ᶠ (a : α) in l, as t) :
theorem indicator_eventuallyLE_indicator {α : Type u_1} {β : Type u_2} [Zero β] [Preorder β] {s : Set α} {f : αβ} {g : αβ} {l : Filter α} (h : f ≤ᶠ[l Filter.principal s] g) :
theorem mulIndicator_eventuallyLE_mulIndicator {α : Type u_1} {β : Type u_2} [One β] [Preorder β] {s : Set α} {f : αβ} {g : αβ} {l : Filter α} (h : f ≤ᶠ[l Filter.principal s] g) :
theorem Monotone.indicator_eventuallyEq_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [Zero β] (s : ιSet α) (hs : Monotone s) (f : αβ) (a : α) :
(fun (i : ι) => Set.indicator (s i) f a) =ᶠ[Filter.atTop] fun (x : ι) => Set.indicator (⋃ (i : ι), s i) f a
theorem Monotone.mulIndicator_eventuallyEq_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [One β] (s : ιSet α) (hs : Monotone s) (f : αβ) (a : α) :
(fun (i : ι) => Set.mulIndicator (s i) f a) =ᶠ[Filter.atTop] fun (x : ι) => Set.mulIndicator (⋃ (i : ι), s i) f a
theorem Monotone.tendsto_indicator {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [Zero β] (s : ιSet α) (hs : Monotone s) (f : αβ) (a : α) :
Filter.Tendsto (fun (i : ι) => Set.indicator (s i) f a) Filter.atTop (pure (Set.indicator (⋃ (i : ι), s i) f a))
theorem Monotone.tendsto_mulIndicator {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [One β] (s : ιSet α) (hs : Monotone s) (f : αβ) (a : α) :
Filter.Tendsto (fun (i : ι) => Set.mulIndicator (s i) f a) Filter.atTop (pure (Set.mulIndicator (⋃ (i : ι), s i) f a))
theorem Antitone.indicator_eventuallyEq_iInter {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [Zero β] (s : ιSet α) (hs : Antitone s) (f : αβ) (a : α) :
(fun (i : ι) => Set.indicator (s i) f a) =ᶠ[Filter.atTop] fun (x : ι) => Set.indicator (⋂ (i : ι), s i) f a
theorem Antitone.mulIndicator_eventuallyEq_iInter {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [One β] (s : ιSet α) (hs : Antitone s) (f : αβ) (a : α) :
(fun (i : ι) => Set.mulIndicator (s i) f a) =ᶠ[Filter.atTop] fun (x : ι) => Set.mulIndicator (⋂ (i : ι), s i) f a
theorem Antitone.tendsto_indicator {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [Zero β] (s : ιSet α) (hs : Antitone s) (f : αβ) (a : α) :
Filter.Tendsto (fun (i : ι) => Set.indicator (s i) f a) Filter.atTop (pure (Set.indicator (⋂ (i : ι), s i) f a))
theorem Antitone.tendsto_mulIndicator {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Preorder ι] [One β] (s : ιSet α) (hs : Antitone s) (f : αβ) (a : α) :
Filter.Tendsto (fun (i : ι) => Set.mulIndicator (s i) f a) Filter.atTop (pure (Set.mulIndicator (⋂ (i : ι), s i) f a))
theorem indicator_biUnion_finset_eventuallyEq {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Zero β] (s : ιSet α) (f : αβ) (a : α) :
(fun (n : Finset ι) => Set.indicator (⋃ i ∈ n, s i) f a) =ᶠ[Filter.atTop] fun (x : Finset ι) => Set.indicator (Set.iUnion s) f a
theorem mulIndicator_biUnion_finset_eventuallyEq {α : Type u_1} {β : Type u_2} {ι : Type u_5} [One β] (s : ιSet α) (f : αβ) (a : α) :
(fun (n : Finset ι) => Set.mulIndicator (⋃ i ∈ n, s i) f a) =ᶠ[Filter.atTop] fun (x : Finset ι) => Set.mulIndicator (Set.iUnion s) f a
theorem tendsto_indicator_biUnion_finset {α : Type u_1} {β : Type u_2} {ι : Type u_5} [Zero β] (s : ιSet α) (f : αβ) (a : α) :
Filter.Tendsto (fun (n : Finset ι) => Set.indicator (⋃ i ∈ n, s i) f a) Filter.atTop (pure (Set.indicator (Set.iUnion s) f a))
theorem tendsto_mulIndicator_biUnion_finset {α : Type u_1} {β : Type u_2} {ι : Type u_5} [One β] (s : ιSet α) (f : αβ) (a : α) :
Filter.Tendsto (fun (n : Finset ι) => Set.mulIndicator (⋃ i ∈ n, s i) f a) Filter.atTop (pure (Set.mulIndicator (Set.iUnion s) f a))
theorem Filter.EventuallyEq.support {α : Type u_1} {β : Type u_2} [Zero β] {f : αβ} {g : αβ} {l : Filter α} (h : f =ᶠ[l] g) :
theorem Filter.EventuallyEq.mulSupport {α : Type u_1} {β : Type u_2} [One β] {f : αβ} {g : αβ} {l : Filter α} (h : f =ᶠ[l] g) :
theorem Filter.EventuallyEq.indicator {α : Type u_1} {β : Type u_2} [Zero β] {l : Filter α} {f : αβ} {g : αβ} {s : Set α} (hfg : f =ᶠ[l] g) :
theorem Filter.EventuallyEq.mulIndicator {α : Type u_1} {β : Type u_2} [One β] {l : Filter α} {f : αβ} {g : αβ} {s : Set α} (hfg : f =ᶠ[l] g) :
theorem Filter.EventuallyEq.indicator_zero {α : Type u_1} {β : Type u_2} [Zero β] {l : Filter α} {f : αβ} {s : Set α} (hf : f =ᶠ[l] 0) :
theorem Filter.EventuallyEq.mulIndicator_one {α : Type u_1} {β : Type u_2} [One β] {l : Filter α} {f : αβ} {s : Set α} (hf : f =ᶠ[l] 1) :
theorem Filter.EventuallyEq.of_indicator {α : Type u_1} {β : Type u_2} [Zero β] {l : Filter α} {f : αβ} (hf : ∀ᶠ (x : α) in l, f x 0) {s : Set α} {t : Set α} (h : Set.indicator s f =ᶠ[l] Set.indicator t f) :
s =ᶠ[l] t
theorem Filter.EventuallyEq.of_mulIndicator {α : Type u_1} {β : Type u_2} [One β] {l : Filter α} {f : αβ} (hf : ∀ᶠ (x : α) in l, f x 1) {s : Set α} {t : Set α} (h : Set.mulIndicator s f =ᶠ[l] Set.mulIndicator t f) :
s =ᶠ[l] t
theorem Filter.EventuallyEq.of_indicator_const {α : Type u_1} {β : Type u_2} [Zero β] {l : Filter α} {c : β} (hc : c 0) {s : Set α} {t : Set α} (h : (Set.indicator s fun (x : α) => c) =ᶠ[l] Set.indicator t fun (x : α) => c) :
s =ᶠ[l] t
theorem Filter.EventuallyEq.of_mulIndicator_const {α : Type u_1} {β : Type u_2} [One β] {l : Filter α} {c : β} (hc : c 1) {s : Set α} {t : Set α} (h : (Set.mulIndicator s fun (x : α) => c) =ᶠ[l] Set.mulIndicator t fun (x : α) => c) :
s =ᶠ[l] t