Documentation

Mathlib.Order.OmegaCompletePartialOrder

Omega Complete Partial Orders #

An omega-complete partial order is a partial order with a supremum operation on increasing sequences indexed by natural numbers (which we call ωSup). In this sense, it is strictly weaker than join complete semi-lattices as only ω-sized totally ordered sets have a supremum.

The concept of an omega-complete partial order (ωCPO) is useful for the formalization of the semantics of programming languages. Its notion of supremum helps define the meaning of recursive procedures.

Main definitions #

Instances of OmegaCompletePartialOrder #

References #

@[simp]
theorem OrderHom.bind_coe {α : Type u_1} [Preorder α] {β : Type u_4} {γ : Type u_4} (f : α →o Part β) (g : α →o βPart γ) (x : α) :
(OrderHom.bind f g) x = f x >>= g x
def OrderHom.bind {α : Type u_1} [Preorder α] {β : Type u_4} {γ : Type u_4} (f : α →o Part β) (g : α →o βPart γ) :
α →o Part γ

Part.bind as a monotone function

Equations
Equations
Equations
  • OmegaCompletePartialOrder.Chain.instCoeFunChainForAllNat = { coe := DFunLike.coe }
Equations
  • OmegaCompletePartialOrder.Chain.instInhabitedChain = { default := { toFun := default, monotone' := } }
Equations
  • OmegaCompletePartialOrder.Chain.instMembershipChain = { mem := fun (a : α) (c : →o α) => ∃ (i : ), a = c i }
Equations
theorem OmegaCompletePartialOrder.Chain.directed {α : Type u} [Preorder α] (c : OmegaCompletePartialOrder.Chain α) :
Directed (fun (x x_1 : α) => x x_1) c
theorem OmegaCompletePartialOrder.Chain.exists_of_mem_map {α : Type u} {β : Type v} [Preorder α] [Preorder β] (c : OmegaCompletePartialOrder.Chain α) {f : α →o β} {b : β} :
b OmegaCompletePartialOrder.Chain.map c f∃ a ∈ c, f a = b
@[simp]
theorem OmegaCompletePartialOrder.Chain.mem_map_iff {α : Type u} {β : Type v} [Preorder α] [Preorder β] (c : OmegaCompletePartialOrder.Chain α) {f : α →o β} {b : β} :
b OmegaCompletePartialOrder.Chain.map c f ∃ a ∈ c, f a = b

OmegaCompletePartialOrder.Chain.zip pairs up the elements of two chains that have the same index.

Equations
@[simp]
class OmegaCompletePartialOrder (α : Type u_1) extends PartialOrder :
Type u_1

An omega-complete partial order is a partial order with a supremum operation on increasing sequences indexed by natural numbers (which we call ωSup). In this sense, it is strictly weaker than join complete semi-lattices as only ω-sized totally ordered sets have a supremum.

See the definition on page 114 of [gunter1992].

Instances
@[reducible]
def OmegaCompletePartialOrder.lift {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [PartialOrder β] (f : β →o α) (ωSup₀ : OmegaCompletePartialOrder.Chain ββ) (h : ∀ (x y : β), f x f yx y) (h' : ∀ (c : OmegaCompletePartialOrder.Chain β), f (ωSup₀ c) = OmegaCompletePartialOrder.ωSup (OmegaCompletePartialOrder.Chain.map c f)) :

Transfer an OmegaCompletePartialOrder on β to an OmegaCompletePartialOrder on α using a strictly monotone function f : β →o α, a definition of ωSup and a proof that f is continuous with regard to the provided ωSup and the ωCPO on α.

Equations

A subset p : α → Prop of the type closed under ωSup induces an OmegaCompletePartialOrder on the subtype {a : α // p a}.

Equations
  • One or more equations did not get rendered due to their size.

A monotone function f : α →o β is continuous if it distributes over ωSup.

In order to distinguish it from the (more commonly used) continuity from topology (see Mathlib/Topology/Basic.lean), the present definition is often referred to as "Scott-continuity" (referring to Dana Scott). It corresponds to continuity in Scott topological spaces (not defined here).

Equations
  • One or more equations did not get rendered due to their size.

Continuous' f asserts that f is both monotone and continuous.

Equations
theorem Part.eq_of_chain {α : Type u} {c : OmegaCompletePartialOrder.Chain (Part α)} {a : α} {b : α} (ha : Part.some a c) (hb : Part.some b c) :
a = b
noncomputable def Part.ωSup {α : Type u} (c : OmegaCompletePartialOrder.Chain (Part α)) :
Part α

The (noncomputable) ωSup definition for the ω-CPO structure on Part α.

Equations
theorem Part.ωSup_eq_none {α : Type u} {c : OmegaCompletePartialOrder.Chain (Part α)} (h : ¬∃ (a : α), Part.some a c) :
Part.ωSup c = Part.none
Equations
instance Pi.instOmegaCompletePartialOrderForAll {α : Type u_1} {β : αType u_2} [(a : α) → OmegaCompletePartialOrder (β a)] :
OmegaCompletePartialOrder ((a : α) → β a)
Equations
  • One or more equations did not get rendered due to their size.
theorem Pi.OmegaCompletePartialOrder.flip₁_continuous' {α : Type u_1} {β : αType u_2} {γ : Type u_3} [(x : α) → OmegaCompletePartialOrder (β x)] [OmegaCompletePartialOrder γ] (f : (x : α) → γβ x) (a : α) (hf : OmegaCompletePartialOrder.Continuous' fun (x : γ) (y : α) => f y x) :
theorem Pi.OmegaCompletePartialOrder.flip₂_continuous' {α : Type u_1} {β : αType u_2} {γ : Type u_3} [(x : α) → OmegaCompletePartialOrder (β x)] [OmegaCompletePartialOrder γ] (f : γ(x : α) → β x) (hf : ∀ (x : α), OmegaCompletePartialOrder.Continuous' fun (g : γ) => f g x) :
Equations

Any complete lattice has an ω-CPO structure where the countable supremum is a special case of arbitrary suprema.

Equations
theorem CompleteLattice.iSup_continuous {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [CompleteLattice β] {ι : Sort u_1} {f : ια →o β} (h : ∀ (i : ι), OmegaCompletePartialOrder.Continuous (f i)) :
Equations
  • OmegaCompletePartialOrder.OrderHom.omegaCompletePartialOrder = OmegaCompletePartialOrder.lift OrderHom.coeFnHom OmegaCompletePartialOrder.OrderHom.ωSup

A monotone function on ω-continuous partial orders is said to be continuous if for every chain c : chain α, f (⊔ i, c i) = ⊔ i, f (c i). This is just the bundled version of OrderHom.continuous.

Instances For

A monotone function on ω-continuous partial orders is said to be continuous if for every chain c : chain α, f (⊔ i, c i) = ⊔ i, f (c i). This is just the bundled version of OrderHom.continuous.

Equations
  • One or more equations did not get rendered due to their size.
Equations
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.coe_mk {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : α →o β) (hf : OmegaCompletePartialOrder.Continuous f) :
{ toOrderHom := f, cont := hf } = f
@[simp]

See Note [custom simps projection]. We specify this explicitly because we don't have a DFunLike instance.

Equations
theorem OmegaCompletePartialOrder.ContinuousHom.congr_fun {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] {f : α →𝒄 β} {g : α →𝒄 β} (h : f = g) (x : α) :
f x = g x
theorem OmegaCompletePartialOrder.ContinuousHom.congr_arg {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : α →𝒄 β) {x : α} {y : α} (h : x = y) :
f x = f y
theorem OmegaCompletePartialOrder.ContinuousHom.apply_mono {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] {f : α →𝒄 β} {g : α →𝒄 β} {x : α} {y : α} (h₁ : f g) (h₂ : x y) :
f x g y
theorem OmegaCompletePartialOrder.ContinuousHom.seq_continuous' {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : αPart (βγ)) (g : αPart β) (hf : OmegaCompletePartialOrder.Continuous' f) (hg : OmegaCompletePartialOrder.Continuous' g) :
OmegaCompletePartialOrder.Continuous' fun (x : α) => Seq.seq (f x) fun (x_1 : Unit) => g x
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.copy_apply {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : αβ) (g : α →𝒄 β) (h : f = g) :
def OmegaCompletePartialOrder.ContinuousHom.copy {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : αβ) (g : α →𝒄 β) (h : f = g) :
α →𝒄 β

Construct a continuous function from a bare function, a continuous function, and a proof that they are equal.

Equations
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.id_apply {α : Type u} [OmegaCompletePartialOrder α] (a : α) :
OmegaCompletePartialOrder.ContinuousHom.id a = a

The identity as a continuous function.

Equations
  • OmegaCompletePartialOrder.ContinuousHom.id = { toOrderHom := OrderHom.id, cont := }

The composition of continuous functions.

Equations
theorem OmegaCompletePartialOrder.ContinuousHom.ext {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : α →𝒄 β) (g : α →𝒄 β) (h : ∀ (x : α), f x = g x) :
f = g
theorem OmegaCompletePartialOrder.ContinuousHom.coe_inj {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : α →𝒄 β) (g : α →𝒄 β) (h : f = g) :
f = g
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.comp_id {β : Type v} {γ : Type u_3} [OmegaCompletePartialOrder β] [OmegaCompletePartialOrder γ] (f : β →𝒄 γ) :
OmegaCompletePartialOrder.ContinuousHom.comp f OmegaCompletePartialOrder.ContinuousHom.id = f
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.id_comp {β : Type v} {γ : Type u_3} [OmegaCompletePartialOrder β] [OmegaCompletePartialOrder γ] (f : β →𝒄 γ) :
OmegaCompletePartialOrder.ContinuousHom.comp OmegaCompletePartialOrder.ContinuousHom.id f = f
@[simp]

Function.const is a continuous function.

Equations
Equations
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.toMono_coe {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : α →𝒄 β) :
OmegaCompletePartialOrder.ContinuousHom.toMono f = f

The map from continuous functions to monotone functions is itself a monotone function.

Equations
  • OmegaCompletePartialOrder.ContinuousHom.toMono = { toFun := fun (f : α →𝒄 β) => f, monotone' := }
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.forall_forall_merge {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (c₀ : OmegaCompletePartialOrder.Chain (α →𝒄 β)) (c₁ : OmegaCompletePartialOrder.Chain α) (z : β) :
(∀ (i j : ), (c₀ i) (c₁ j) z) ∀ (i : ), (c₀ i) (c₁ i) z

When proving that a chain of applications is below a bound z, it suffices to consider the functions and values being selected from the same index in the chains.

This lemma is more specific than necessary, i.e. c₀ only needs to be a chain of monotone functions, but it is only used with continuous functions.

@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.forall_forall_merge' {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (c₀ : OmegaCompletePartialOrder.Chain (α →𝒄 β)) (c₁ : OmegaCompletePartialOrder.Chain α) (z : β) :
(∀ (j i : ), (c₀ i) (c₁ j) z) ∀ (i : ), (c₀ i) (c₁ i) z

The ωSup operator for continuous functions, which takes the pointwise countable supremum of the functions in the ω-chain.

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.Prod.apply_apply {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (f : (α →𝒄 β) × α) :
OmegaCompletePartialOrder.ContinuousHom.Prod.apply f = f.1 f.2

The application of continuous functions as a continuous function.

Equations
  • OmegaCompletePartialOrder.ContinuousHom.Prod.apply = { toOrderHom := { toFun := fun (f : (α →𝒄 β) × α) => f.1 f.2, monotone' := }, cont := }
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.flip_apply {β : Type v} {γ : Type u_3} [OmegaCompletePartialOrder β] [OmegaCompletePartialOrder γ] {α : Type u_5} (f : αβ →𝒄 γ) (x : β) (y : α) :
def OmegaCompletePartialOrder.ContinuousHom.flip {β : Type v} {γ : Type u_3} [OmegaCompletePartialOrder β] [OmegaCompletePartialOrder γ] {α : Type u_5} (f : αβ →𝒄 γ) :
β →𝒄 αγ

A family of continuous functions yields a continuous family of functions.

Equations
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.bind_apply {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : α →𝒄 Part β) (g : α →𝒄 βPart γ) (x : α) :
noncomputable def OmegaCompletePartialOrder.ContinuousHom.bind {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : α →𝒄 Part β) (g : α →𝒄 βPart γ) :

Part.bind as a continuous function.

Equations
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.map_apply {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : βγ) (g : α →𝒄 Part β) (x : α) :
noncomputable def OmegaCompletePartialOrder.ContinuousHom.map {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : βγ) (g : α →𝒄 Part β) :

Part.map as a continuous function.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem OmegaCompletePartialOrder.ContinuousHom.seq_apply {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : α →𝒄 Part (βγ)) (g : α →𝒄 Part β) (x : α) :
noncomputable def OmegaCompletePartialOrder.ContinuousHom.seq {α : Type u} [OmegaCompletePartialOrder α] {β : Type v} {γ : Type v} (f : α →𝒄 Part (βγ)) (g : α →𝒄 Part β) :

Part.seq as a continuous function.

Equations
  • One or more equations did not get rendered due to their size.