Documentation

Mathlib.RingTheory.Ideal.Prod

Ideals in product rings #

For commutative rings R and S and ideals I ≤ R, J ≤ S, we define Ideal.prod I J as the product I × J, viewed as an ideal of R × S. In ideal_prod_eq we show that every ideal of R × S is of this form. Furthermore, we show that every prime ideal of R × S is of the form p × S or R × p, where p is a prime ideal.

def Ideal.prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) :
Ideal (R × S)

I × J as an ideal of R × S.

Equations
  • Ideal.prod I J = { toAddSubmonoid := { toAddSubsemigroup := { carrier := {x : R × S | x.1 I x.2 J}, add_mem' := }, zero_mem' := }, smul_mem' := }
Instances For
    @[simp]
    theorem Ideal.mem_prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) {r : R} {s : S} :
    (r, s) Ideal.prod I J r I s J
    @[simp]
    theorem Ideal.prod_top_top {R : Type u} {S : Type v} [Semiring R] [Semiring S] :
    theorem Ideal.ideal_prod_eq {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal (R × S)) :

    Every ideal of the product ring is of the form I × J, where I and J can be explicitly given as the image under the projection maps.

    @[simp]
    theorem Ideal.map_fst_prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) :
    @[simp]
    theorem Ideal.map_snd_prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) :
    @[simp]
    theorem Ideal.map_prodComm_prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) :
    Ideal.map (RingEquiv.prodComm) (Ideal.prod I J) = Ideal.prod J I
    def Ideal.idealProdEquiv {R : Type u} {S : Type v} [Semiring R] [Semiring S] :
    Ideal (R × S) Ideal R × Ideal S

    Ideals of R × S are in one-to-one correspondence with pairs of ideals of R and ideals of S.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Ideal.idealProdEquiv_symm_apply {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) :
      Ideal.idealProdEquiv.symm (I, J) = Ideal.prod I J
      theorem Ideal.prod.ext_iff {R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal R} {I' : Ideal R} {J : Ideal S} {J' : Ideal S} :
      Ideal.prod I J = Ideal.prod I' J' I = I' J = J'
      theorem Ideal.ideal_prod_prime_aux {R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal R} {J : Ideal S} :
      theorem Ideal.ideal_prod_prime {R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal (R × S)) :

      Classification of prime ideals in product rings: the prime ideals of R × S are precisely the ideals of the form p × S or R × p, where p is a prime ideal of R or S.