Documentation

Mathlib.RingTheory.Localization.AtPrime

Localizations of commutative rings at the complement of a prime ideal #

Main definitions #

Main results #

Implementation notes #

See RingTheory.Localization.Basic for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

def Ideal.primeCompl {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : Ideal.IsPrime P] :

The complement of a prime ideal P ⊆ R is a submonoid of R.

Equations
  • Ideal.primeCompl P = { toSubsemigroup := { carrier := (P), mul_mem' := }, one_mem' := }
Instances For
    @[inline, reducible]
    abbrev IsLocalization.AtPrime {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : Ideal.IsPrime P] :

    Given a prime ideal P, the typeclass IsLocalization.AtPrime S P states that S is isomorphic to the localization of R at the complement of P.

    Equations
    Instances For
      @[inline, reducible]
      abbrev Localization.AtPrime {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : Ideal.IsPrime P] :
      Type u_1

      Given a prime ideal P, Localization.AtPrime P is a localization of R at the complement of P, as a quotient type.

      Equations
      Instances For

        The localization of R at the complement of a prime ideal is a local ring.

        Equations
        • =

        The localization of an integral domain at the complement of a prime ideal is an integral domain.

        Equations
        • =
        def IsLocalization.AtPrime.orderIsoOfPrime {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : Ideal.IsPrime I] [IsLocalization.AtPrime S I] :
        { p : Ideal S // Ideal.IsPrime p } ≃o { p : Ideal R // Ideal.IsPrime p p I }

        The prime ideals in the localization of a commutative ring at a prime ideal I are in order-preserving bijection with the prime ideals contained in I.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The unique maximal ideal of the localization at I.primeCompl lies over the ideal I.

          The image of I in the localization at I.primeCompl is a maximal ideal, and in particular it is the unique maximal ideal given by the local ring structure AtPrime.localRing

          noncomputable def Localization.localRingHom {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) :

          For a ring hom f : R →+* S and a prime ideal J in S, the induced ring hom from the localization of R at J.comap f to the localization of S at J.

          To make this definition more flexible, we allow any ideal I of R as input, together with a proof that I = J.comap f. This can be useful when I is not definitionally equal to J.comap f.

          Equations
          Instances For
            theorem Localization.localRingHom_to_map {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) :
            theorem Localization.localRingHom_mk' {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) (y : (Ideal.primeCompl I)) :
            (Localization.localRingHom I J f hIJ) (IsLocalization.mk' (Localization.AtPrime I) x y) = IsLocalization.mk' (Localization.AtPrime J) (f x) { val := f y, property := }
            instance Localization.isLocalRingHom_localRingHom {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [hJ : Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) :
            Equations
            • =
            theorem Localization.localRingHom_unique {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) {j : Localization.AtPrime I →+* Localization.AtPrime J} (hj : ∀ (x : R), j ((algebraMap R (Localization.AtPrime I)) x) = (algebraMap P (Localization.AtPrime J)) (f x)) :
            theorem Localization.localRingHom_comp {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] {S : Type u_4} [CommSemiring S] (J : Ideal S) [hJ : Ideal.IsPrime J] (K : Ideal P) [hK : Ideal.IsPrime K] (f : R →+* S) (hIJ : I = Ideal.comap f J) (g : S →+* P) (hJK : J = Ideal.comap g K) :