Topological facts about Int.floor
, Int.ceil
and Int.fract
#
This file proves statements about limits and continuity of functions involving floor
, ceil
and
fract
.
Main declarations #
tendsto_floor_atTop
,tendsto_floor_atBot
,tendsto_ceil_atTop
,tendsto_ceil_atBot
:Int.floor
andInt.ceil
tend to +-∞ in +-∞.continuousOn_floor
:Int.floor
is continuous onIco n (n + 1)
, because constant.continuousOn_ceil
:Int.ceil
is continuous onIoc n (n + 1)
, because constant.continuousOn_fract
:Int.fract
is continuous onIco n (n + 1)
.ContinuousOn.comp_fract
: Precomposing a continuous function satisfyingf 0 = f 1
withInt.fract
yields another continuous function.
theorem
tendsto_floor_atTop
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
:
Filter.Tendsto Int.floor Filter.atTop Filter.atTop
theorem
tendsto_floor_atBot
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
:
Filter.Tendsto Int.floor Filter.atBot Filter.atBot
theorem
tendsto_ceil_atTop
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
:
Filter.Tendsto Int.ceil Filter.atTop Filter.atTop
theorem
tendsto_ceil_atBot
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
:
Filter.Tendsto Int.ceil Filter.atBot Filter.atBot
theorem
continuousOn_floor
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
(n : ℤ)
:
ContinuousOn (fun (x : α) => ↑⌊x⌋) (Set.Ico (↑n) (↑n + 1))
theorem
continuousOn_ceil
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
(n : ℤ)
:
ContinuousOn (fun (x : α) => ↑⌈x⌉) (Set.Ioc (↑n - 1) ↑n)
theorem
tendsto_floor_right_pure_floor
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(x : α)
:
Filter.Tendsto Int.floor (nhdsWithin x (Set.Ici x)) (pure ⌊x⌋)
theorem
tendsto_floor_right_pure
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto Int.floor (nhdsWithin (↑n) (Set.Ici ↑n)) (pure n)
theorem
tendsto_ceil_left_pure_ceil
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(x : α)
:
Filter.Tendsto Int.ceil (nhdsWithin x (Set.Iic x)) (pure ⌈x⌉)
theorem
tendsto_ceil_left_pure
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto Int.ceil (nhdsWithin (↑n) (Set.Iic ↑n)) (pure n)
theorem
tendsto_floor_left_pure_ceil_sub_one
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(x : α)
:
Filter.Tendsto Int.floor (nhdsWithin x (Set.Iio x)) (pure (⌈x⌉ - 1))
theorem
tendsto_floor_left_pure_sub_one
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto Int.floor (nhdsWithin (↑n) (Set.Iio ↑n)) (pure (n - 1))
theorem
tendsto_ceil_right_pure_floor_add_one
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(x : α)
:
Filter.Tendsto Int.ceil (nhdsWithin x (Set.Ioi x)) (pure (⌊x⌋ + 1))
theorem
tendsto_ceil_right_pure_add_one
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto Int.ceil (nhdsWithin (↑n) (Set.Ioi ↑n)) (pure (n + 1))
theorem
tendsto_floor_right
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌊x⌋) (nhdsWithin (↑n) (Set.Ici ↑n)) (nhdsWithin (↑n) (Set.Ici ↑n))
theorem
tendsto_floor_right'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌊x⌋) (nhdsWithin (↑n) (Set.Ici ↑n)) (nhds ↑n)
theorem
tendsto_ceil_left
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌈x⌉) (nhdsWithin (↑n) (Set.Iic ↑n)) (nhdsWithin (↑n) (Set.Iic ↑n))
theorem
tendsto_ceil_left'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌈x⌉) (nhdsWithin (↑n) (Set.Iic ↑n)) (nhds ↑n)
theorem
tendsto_floor_left
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌊x⌋) (nhdsWithin (↑n) (Set.Iio ↑n)) (nhdsWithin (↑n - 1) (Set.Iic (↑n - 1)))
theorem
tendsto_ceil_right
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌈x⌉) (nhdsWithin (↑n) (Set.Ioi ↑n)) (nhdsWithin (↑n + 1) (Set.Ici (↑n + 1)))
theorem
tendsto_floor_left'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌊x⌋) (nhdsWithin (↑n) (Set.Iio ↑n)) (nhds (↑n - 1))
theorem
tendsto_ceil_right'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
(n : ℤ)
:
Filter.Tendsto (fun (x : α) => ↑⌈x⌉) (nhdsWithin (↑n) (Set.Ioi ↑n)) (nhds (↑n + 1))
theorem
continuousOn_fract
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[TopologicalAddGroup α]
(n : ℤ)
:
ContinuousOn Int.fract (Set.Ico (↑n) (↑n + 1))
theorem
continuousAt_fract
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
[TopologicalAddGroup α]
{x : α}
(h : x ≠ ↑⌊x⌋)
:
ContinuousAt Int.fract x
theorem
tendsto_fract_left'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
[TopologicalAddGroup α]
(n : ℤ)
:
Filter.Tendsto Int.fract (nhdsWithin (↑n) (Set.Iio ↑n)) (nhds 1)
theorem
tendsto_fract_left
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
[TopologicalAddGroup α]
(n : ℤ)
:
Filter.Tendsto Int.fract (nhdsWithin (↑n) (Set.Iio ↑n)) (nhdsWithin 1 (Set.Iio 1))
theorem
tendsto_fract_right'
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
[TopologicalAddGroup α]
(n : ℤ)
:
Filter.Tendsto Int.fract (nhdsWithin (↑n) (Set.Ici ↑n)) (nhds 0)
theorem
tendsto_fract_right
{α : Type u_1}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderClosedTopology α]
[TopologicalAddGroup α]
(n : ℤ)
:
Filter.Tendsto Int.fract (nhdsWithin (↑n) (Set.Ici ↑n)) (nhdsWithin 0 (Set.Ici 0))
theorem
ContinuousOn.comp_fract'
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderTopology α]
[TopologicalSpace β]
[TopologicalSpace γ]
{f : β → α → γ}
(h : ContinuousOn (Function.uncurry f) (Set.univ ×ˢ Set.Icc 0 1))
(hf : ∀ (s : β), f s 0 = f s 1)
:
Continuous fun (st : β × α) => f st.1 (Int.fract st.2)
Do not use this, use ContinuousOn.comp_fract
instead.
theorem
ContinuousOn.comp_fract
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderTopology α]
[TopologicalSpace β]
[TopologicalSpace γ]
{s : β → α}
{f : β → α → γ}
(h : ContinuousOn (Function.uncurry f) (Set.univ ×ˢ Set.Icc 0 1))
(hs : Continuous s)
(hf : ∀ (s : β), f s 0 = f s 1)
:
Continuous fun (x : β) => f x (Int.fract (s x))
theorem
ContinuousOn.comp_fract''
{α : Type u_1}
{β : Type u_2}
[LinearOrderedRing α]
[FloorRing α]
[TopologicalSpace α]
[OrderTopology α]
[TopologicalSpace β]
{f : α → β}
(h : ContinuousOn f (Set.Icc 0 1))
(hf : f 0 = f 1)
:
Continuous (f ∘ Int.fract)
A special case of ContinuousOn.comp_fract
.