Documentation

Std.Data.HashMap.Lemmas

Hash map lemmas #

This module contains lemmas about Std.Data.HashMap. Most of the lemmas require EquivBEq α and LawfulHashable α for the key type α. The easiest way to obtain these instances is to provide an instance of LawfulBEq α.

@[simp]
theorem Std.HashMap.isEmpty_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {c : Nat}, (Std.HashMap.empty c).isEmpty = true
@[simp]
theorem Std.HashMap.isEmpty_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α}, .isEmpty = true
@[simp]
theorem Std.HashMap.isEmpty_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insert k v).isEmpty = false
theorem Std.HashMap.mem_iff_contains {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {a : α}, a m m.contains a = true
theorem Std.HashMap.contains_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α}, (a == b) = truem.contains a = m.contains b
theorem Std.HashMap.mem_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α}, (a == b) = true(a m b m)
@[simp]
theorem Std.HashMap.contains_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashMap.empty c).contains a = false
@[simp]
theorem Std.HashMap.get_eq_getElem {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {a : α} {h : a m}, m.get a h = m[a]
@[simp]
theorem Std.HashMap.get?_eq_getElem? {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {a : α}, m.get? a = m[a]?
@[simp]
theorem Std.HashMap.get!_eq_getElem! {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : Inhabited β] {a : α}, m.get! a = m[a]!
@[simp]
theorem Std.HashMap.not_mem_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, ¬a Std.HashMap.empty c
@[simp]
theorem Std.HashMap.contains_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α}, .contains a = false
@[simp]
theorem Std.HashMap.not_mem_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α}, ¬a
theorem Std.HashMap.contains_of_isEmpty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, m.isEmpty = truem.contains a = false
theorem Std.HashMap.not_mem_of_isEmpty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, m.isEmpty = true¬a m
theorem Std.HashMap.isEmpty_eq_false_iff_exists_contains_eq_true {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α], m.isEmpty = false ∃ (a : α), m.contains a = true
theorem Std.HashMap.isEmpty_eq_false_iff_exists_mem {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α], m.isEmpty = false ∃ (a : α), a m
theorem Std.HashMap.isEmpty_iff_forall_contains {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α], m.isEmpty = true ∀ (a : α), m.contains a = false
theorem Std.HashMap.isEmpty_iff_forall_not_mem {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α], m.isEmpty = true ∀ (a : α), ¬a m
@[simp]
theorem Std.HashMap.contains_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insert k v).contains a = (k == a || m.contains a)
@[simp]
theorem Std.HashMap.mem_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, a m.insert k v (k == a) = true a m
theorem Std.HashMap.contains_of_contains_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insert k v).contains a = true(k == a) = falsem.contains a = true
theorem Std.HashMap.mem_of_mem_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, a m.insert k v(k == a) = falsea m
@[simp]
theorem Std.HashMap.contains_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insert k v).contains k = true
@[simp]
theorem Std.HashMap.mem_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, k m.insert k v
@[simp]
theorem Std.HashMap.size_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {c : Nat}, (Std.HashMap.empty c).size = 0
@[simp]
theorem Std.HashMap.size_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α}, .size = 0
theorem Std.HashMap.isEmpty_eq_size_eq_zero {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β}, m.isEmpty = (m.size == 0)
theorem Std.HashMap.size_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insert k v).size = if k m then m.size else m.size + 1
theorem Std.HashMap.size_le_size_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, m.size (m.insert k v).size
theorem Std.HashMap.size_insert_le {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insert k v).size m.size + 1
@[simp]
theorem Std.HashMap.erase_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashMap.empty c).erase a = Std.HashMap.empty c
@[simp]
theorem Std.HashMap.erase_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α}, .erase a =
@[simp]
theorem Std.HashMap.isEmpty_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}, (m.erase k).isEmpty = (m.isEmpty || m.size == 1 && m.contains k)
@[simp]
theorem Std.HashMap.contains_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}, (m.erase k).contains a = (!k == a && m.contains a)
@[simp]
theorem Std.HashMap.mem_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}, a m.erase k (k == a) = false a m
theorem Std.HashMap.contains_of_contains_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}, (m.erase k).contains a = truem.contains a = true
theorem Std.HashMap.mem_of_mem_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}, a m.erase ka m
theorem Std.HashMap.size_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}, (m.erase k).size = if k m then m.size - 1 else m.size
theorem Std.HashMap.size_erase_le {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}, (m.erase k).size m.size
theorem Std.HashMap.size_le_size_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}, m.size (m.erase k).size + 1
@[simp]
theorem Std.HashMap.containsThenInsert_fst {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsert k v).fst = m.contains k
@[simp]
theorem Std.HashMap.containsThenInsert_snd {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsert k v).snd = m.insert k v
@[simp]
theorem Std.HashMap.containsThenInsertIfNew_fst {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsertIfNew k v).fst = m.contains k
@[simp]
theorem Std.HashMap.containsThenInsertIfNew_snd {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsertIfNew k v).snd = m.insertIfNew k v
@[simp]
theorem Std.HashMap.getElem?_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashMap.empty c)[a]? = none
@[simp]
theorem Std.HashMap.getElem?_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α}, [a]? = none
theorem Std.HashMap.getElem?_of_isEmpty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, m.isEmpty = truem[a]? = none
theorem Std.HashMap.getElem?_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insert k v)[a]? = if (k == a) = true then some v else m[a]?
@[simp]
theorem Std.HashMap.getElem?_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insert k v)[k]? = some v
theorem Std.HashMap.contains_eq_isSome_getElem? {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, m.contains a = m[a]?.isSome
theorem Std.HashMap.getElem?_eq_none_of_contains_eq_false {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, m.contains a = falsem[a]? = none
theorem Std.HashMap.getElem?_eq_none {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}, ¬a mm[a]? = none
theorem Std.HashMap.getElem?_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}, (m.erase k)[a]? = if (k == a) = true then none else m[a]?
@[simp]
theorem Std.HashMap.getElem?_erase_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}, (m.erase k)[k]? = none
theorem Std.HashMap.getElem?_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α}, (a == b) = truem[a]? = m[b]?
theorem Std.HashMap.getElem_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α} {v : β} {h₁ : a m.insert k v}, (m.insert k v)[a] = if h₂ : (k == a) = true then v else m[a]
@[simp]
theorem Std.HashMap.getElem_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k : α} {v : β}, (m.insert k v)[k] = v
@[simp]
theorem Std.HashMap.getElem_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α} {h' : a m.erase k}, (m.erase k)[a] = m[a]
theorem Std.HashMap.getElem?_eq_some_getElem {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {h' : a m}, m[a]? = some m[a]
theorem Std.HashMap.getElem_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : LawfulBEq α] {a b : α} (hab : (a == b) = true) {h' : a m}, m[a] = m[b]
@[simp]
theorem Std.HashMap.getElem!_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} [inst : Inhabited β] {a : α} {c : Nat}, (Std.HashMap.empty c)[a]! = default
@[simp]
theorem Std.HashMap.getElem!_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} [inst : Inhabited β] {a : α}, [a]! = default
theorem Std.HashMap.getElem!_of_isEmpty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m.isEmpty = truem[a]! = default
theorem Std.HashMap.getElem!_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {k a : α} {v : β}, (m.insert k v)[a]! = if (k == a) = true then v else m[a]!
@[simp]
theorem Std.HashMap.getElem!_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {k : α} {v : β}, (m.insert k v)[k]! = v
theorem Std.HashMap.getElem!_eq_default_of_contains_eq_false {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m.contains a = falsem[a]! = default
theorem Std.HashMap.getElem!_eq_default {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, ¬a mm[a]! = default
theorem Std.HashMap.getElem!_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {k a : α}, (m.erase k)[a]! = if (k == a) = true then default else m[a]!
@[simp]
theorem Std.HashMap.getElem!_erase_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {k : α}, (m.erase k)[k]! = default
theorem Std.HashMap.getElem?_eq_some_getElem!_of_contains {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m.contains a = truem[a]? = some m[a]!
theorem Std.HashMap.getElem?_eq_some_getElem! {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, a mm[a]? = some m[a]!
theorem Std.HashMap.getElem!_eq_get!_getElem? {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m[a]! = m[a]?.get!
theorem Std.HashMap.getElem_eq_getElem! {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α} {h' : a m}, m[a] = m[a]!
theorem Std.HashMap.getElem!_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a b : α}, (a == b) = truem[a]! = m[b]!
@[simp]
theorem Std.HashMap.getD_empty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {fallback : β} {c : Nat}, (Std.HashMap.empty c).getD a fallback = fallback
@[simp]
theorem Std.HashMap.getD_emptyc {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {fallback : β}, .getD a fallback = fallback
theorem Std.HashMap.getD_of_isEmpty {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, m.isEmpty = truem.getD a fallback = fallback
theorem Std.HashMap.getD_insert {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {fallback v : β}, (m.insert k v).getD a fallback = if (k == a) = true then v else m.getD a fallback
@[simp]
theorem Std.HashMap.getD_insert_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {fallback v : β}, (m.insert k v).getD k fallback = v
theorem Std.HashMap.getD_eq_fallback_of_contains_eq_false {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, m.contains a = falsem.getD a fallback = fallback
theorem Std.HashMap.getD_eq_fallback {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, ¬a mm.getD a fallback = fallback
theorem Std.HashMap.getD_erase {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {fallback : β}, (m.erase k).getD a fallback = if (k == a) = true then fallback else m.getD a fallback
@[simp]
theorem Std.HashMap.getD_erase_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {fallback : β}, (m.erase k).getD k fallback = fallback
theorem Std.HashMap.getElem?_eq_some_getD_of_contains {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, m.contains a = truem[a]? = some (m.getD a fallback)
theorem Std.HashMap.getElem?_eq_some_getD {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, a mm[a]? = some (m.getD a fallback)
theorem Std.HashMap.getD_eq_getD_getElem? {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β}, m.getD a fallback = m[a]?.getD fallback
theorem Std.HashMap.getElem_eq_getD {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {fallback : β} {h' : a m}, m[a] = m.getD a fallback
theorem Std.HashMap.getElem!_eq_getD_default {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {a : α}, m[a]! = m.getD a default
theorem Std.HashMap.getD_congr {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α} {fallback : β}, (a == b) = truem.getD a fallback = m.getD b fallback
@[simp]
theorem Std.HashMap.isEmpty_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insertIfNew k v).isEmpty = false
@[simp]
theorem Std.HashMap.contains_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insertIfNew k v).contains a = (k == a || m.contains a)
@[simp]
theorem Std.HashMap.mem_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, a m.insertIfNew k v (k == a) = true a m
theorem Std.HashMap.contains_insertIfNew_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insertIfNew k v).contains k = true
theorem Std.HashMap.mem_insertIfNew_self {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, k m.insertIfNew k v
theorem Std.HashMap.contains_of_contains_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insertIfNew k v).contains a = true(k == a) = falsem.contains a = true
theorem Std.HashMap.mem_of_mem_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, a m.insertIfNew k v(k == a) = falsea m
theorem Std.HashMap.contains_of_contains_insertIfNew' {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insertIfNew k v).contains a = true¬((k == a) = true m.contains k = false)m.contains a = true

This is a restatement of contains_insertIfNew that is written to exactly match the proof obligation in the statement of getElem_insertIfNew.

theorem Std.HashMap.mem_of_mem_insertIfNew' {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, a m.insertIfNew k v¬((k == a) = true ¬k m)a m

This is a restatement of mem_insertIfNew that is written to exactly match the proof obligation in the statement of getElem_insertIfNew.

theorem Std.HashMap.size_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insertIfNew k v).size = if k m then m.size else m.size + 1
theorem Std.HashMap.size_le_size_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, m.size (m.insertIfNew k v).size
theorem Std.HashMap.size_insertIfNew_le {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β}, (m.insertIfNew k v).size m.size + 1
theorem Std.HashMap.getElem?_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β}, (m.insertIfNew k v)[a]? = if (k == a) = true ¬k m then some v else m[a]?
theorem Std.HashMap.getElem_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α} {v : β} {h₁ : a m.insertIfNew k v}, (m.insertIfNew k v)[a] = if h₂ : (k == a) = true ¬k m then v else m[a]
theorem Std.HashMap.getElem!_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited β] {k a : α} {v : β}, (m.insertIfNew k v)[a]! = if (k == a) = true ¬k m then v else m[a]!
theorem Std.HashMap.getD_insertIfNew {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {fallback v : β}, (m.insertIfNew k v).getD a fallback = if (k == a) = true ¬k m then v else m.getD a fallback
@[simp]
theorem Std.HashMap.getThenInsertIfNew?_fst {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.getThenInsertIfNew? k v).fst = m.get? k
@[simp]
theorem Std.HashMap.getThenInsertIfNew?_snd {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.getThenInsertIfNew? k v).snd = m.insertIfNew k v
instance Std.HashMap.instLawfulGetElemMemOfEquivBEqOfLawfulHashable {α : Type u} {β : Type v} :
∀ {x : BEq α} {x_1 : Hashable α} [inst : EquivBEq α] [inst : LawfulHashable α], LawfulGetElem (Std.HashMap α β) α β fun (m : Std.HashMap α β) (a : α) => a m
Equations
  • =