Hash map lemmas #
This module contains lemmas about Std.Data.HashMap
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[simp]
@[simp]
theorem
Std.HashMap.isEmpty_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insert k v).isEmpty = false
theorem
Std.HashMap.contains_congr
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α},
(a == b) = true → m.contains a = m.contains b
@[simp]
@[simp]
theorem
Std.HashMap.get_eq_getElem
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {a : α} {h : a ∈ m}, m.get a h = m[a]
@[simp]
theorem
Std.HashMap.get?_eq_getElem?
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {a : α}, m.get? a = m[a]?
@[simp]
theorem
Std.HashMap.get!_eq_getElem!
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : Inhabited β] {a : α}, m.get! a = m[a]!
@[simp]
theorem
Std.HashMap.contains_of_isEmpty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → m.contains a = false
theorem
Std.HashMap.not_mem_of_isEmpty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → ¬a ∈ m
theorem
Std.HashMap.isEmpty_eq_false_iff_exists_contains_eq_true
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), m.contains a = true
theorem
Std.HashMap.isEmpty_eq_false_iff_exists_mem
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), a ∈ m
theorem
Std.HashMap.isEmpty_iff_forall_contains
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), m.contains a = false
theorem
Std.HashMap.isEmpty_iff_forall_not_mem
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), ¬a ∈ m
@[simp]
theorem
Std.HashMap.contains_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β},
(m.insert k v).contains a = (k == a || m.contains a)
theorem
Std.HashMap.mem_of_mem_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β},
a ∈ m.insert k v → (k == a) = false → a ∈ m
@[simp]
theorem
Std.HashMap.contains_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insert k v).contains k = true
@[simp]
theorem
Std.HashMap.mem_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
k ∈ m.insert k v
@[simp]
theorem
Std.HashMap.size_empty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {c : Nat}, (Std.HashMap.empty c).size = 0
theorem
Std.HashMap.isEmpty_eq_size_eq_zero
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β}, m.isEmpty = (m.size == 0)
theorem
Std.HashMap.size_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insert k v).size = if k ∈ m then m.size else m.size + 1
theorem
Std.HashMap.size_le_size_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
m.size ≤ (m.insert k v).size
theorem
Std.HashMap.size_insert_le
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insert k v).size ≤ m.size + 1
@[simp]
theorem
Std.HashMap.erase_empty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashMap.empty c).erase a = Std.HashMap.empty c
@[simp]
theorem
Std.HashMap.isEmpty_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).isEmpty = (m.isEmpty || m.size == 1 && m.contains k)
@[simp]
theorem
Std.HashMap.contains_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = (!k == a && m.contains a)
theorem
Std.HashMap.contains_of_contains_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = true → m.contains a = true
theorem
Std.HashMap.mem_of_mem_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
a ∈ m.erase k → a ∈ m
theorem
Std.HashMap.size_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size = if k ∈ m then m.size - 1 else m.size
theorem
Std.HashMap.size_erase_le
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size ≤ m.size
theorem
Std.HashMap.size_le_size_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
m.size ≤ (m.erase k).size + 1
@[simp]
theorem
Std.HashMap.containsThenInsert_fst
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsert k v).fst = m.contains k
@[simp]
theorem
Std.HashMap.containsThenInsert_snd
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.containsThenInsert k v).snd = m.insert k v
@[simp]
theorem
Std.HashMap.containsThenInsertIfNew_fst
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β},
(m.containsThenInsertIfNew k v).fst = m.contains k
@[simp]
theorem
Std.HashMap.containsThenInsertIfNew_snd
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β},
(m.containsThenInsertIfNew k v).snd = m.insertIfNew k v
@[simp]
theorem
Std.HashMap.getElem?_empty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashMap.empty c)[a]? = none
theorem
Std.HashMap.getElem?_of_isEmpty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → m[a]? = none
theorem
Std.HashMap.getElem?_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β},
(m.insert k v)[a]? = if (k == a) = true then some v else m[a]?
@[simp]
theorem
Std.HashMap.getElem?_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insert k v)[k]? = some v
theorem
Std.HashMap.contains_eq_isSome_getElem?
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.contains a = m[a]?.isSome
theorem
Std.HashMap.getElem?_eq_none_of_contains_eq_false
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.contains a = false → m[a]? = none
theorem
Std.HashMap.getElem?_eq_none
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
¬a ∈ m → m[a]? = none
theorem
Std.HashMap.getElem?_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k)[a]? = if (k == a) = true then none else m[a]?
@[simp]
theorem
Std.HashMap.getElem?_erase_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k)[k]? = none
theorem
Std.HashMap.getElem?_congr
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α},
(a == b) = true → m[a]? = m[b]?
theorem
Std.HashMap.getElem_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α} {v : β}
{h₁ : a ∈ m.insert k v}, (m.insert k v)[a] = if h₂ : (k == a) = true then v else m[a]
@[simp]
theorem
Std.HashMap.getElem_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k : α} {v : β},
(m.insert k v)[k] = v
@[simp]
theorem
Std.HashMap.getElem_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α}
{h' : a ∈ m.erase k}, (m.erase k)[a] = m[a]
theorem
Std.HashMap.getElem?_eq_some_getElem
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{h' : a ∈ m}, m[a]? = some m[a]
@[simp]
theorem
Std.HashMap.getElem!_of_isEmpty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, m.isEmpty = true → m[a]! = default
theorem
Std.HashMap.getElem!_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {k a : α} {v : β}, (m.insert k v)[a]! = if (k == a) = true then v else m[a]!
@[simp]
theorem
Std.HashMap.getElem!_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {k : α} {v : β}, (m.insert k v)[k]! = v
theorem
Std.HashMap.getElem!_eq_default_of_contains_eq_false
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, m.contains a = false → m[a]! = default
theorem
Std.HashMap.getElem!_eq_default
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, ¬a ∈ m → m[a]! = default
theorem
Std.HashMap.getElem!_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {k a : α}, (m.erase k)[a]! = if (k == a) = true then default else m[a]!
@[simp]
theorem
Std.HashMap.getElem!_erase_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {k : α}, (m.erase k)[k]! = default
theorem
Std.HashMap.getElem?_eq_some_getElem!_of_contains
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, m.contains a = true → m[a]? = some m[a]!
theorem
Std.HashMap.getElem?_eq_some_getElem!
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, a ∈ m → m[a]? = some m[a]!
theorem
Std.HashMap.getElem!_eq_get!_getElem?
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, m[a]! = m[a]?.get!
theorem
Std.HashMap.getElem_eq_getElem!
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α} {h' : a ∈ m}, m[a] = m[a]!
theorem
Std.HashMap.getElem!_congr
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a b : α}, (a == b) = true → m[a]! = m[b]!
@[simp]
theorem
Std.HashMap.getD_empty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {fallback : β} {c : Nat}, (Std.HashMap.empty c).getD a fallback = fallback
theorem
Std.HashMap.getD_of_isEmpty
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, m.isEmpty = true → m.getD a fallback = fallback
theorem
Std.HashMap.getD_insert
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{fallback v : β}, (m.insert k v).getD a fallback = if (k == a) = true then v else m.getD a fallback
@[simp]
theorem
Std.HashMap.getD_insert_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}
{fallback v : β}, (m.insert k v).getD k fallback = v
theorem
Std.HashMap.getD_eq_fallback_of_contains_eq_false
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, m.contains a = false → m.getD a fallback = fallback
theorem
Std.HashMap.getD_eq_fallback
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, ¬a ∈ m → m.getD a fallback = fallback
theorem
Std.HashMap.getD_erase
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α}
{fallback : β}, (m.erase k).getD a fallback = if (k == a) = true then fallback else m.getD a fallback
@[simp]
theorem
Std.HashMap.getD_erase_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α}
{fallback : β}, (m.erase k).getD k fallback = fallback
theorem
Std.HashMap.getElem?_eq_some_getD_of_contains
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, m.contains a = true → m[a]? = some (m.getD a fallback)
theorem
Std.HashMap.getElem?_eq_some_getD
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, a ∈ m → m[a]? = some (m.getD a fallback)
theorem
Std.HashMap.getD_eq_getD_getElem?
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β}, m.getD a fallback = m[a]?.getD fallback
theorem
Std.HashMap.getElem_eq_getD
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α}
{fallback : β} {h' : a ∈ m}, m[a] = m.getD a fallback
theorem
Std.HashMap.getElem!_eq_getD_default
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α]
[inst : Inhabited β] {a : α}, m[a]! = m.getD a default
theorem
Std.HashMap.getD_congr
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α}
{fallback : β}, (a == b) = true → m.getD a fallback = m.getD b fallback
@[simp]
theorem
Std.HashMap.isEmpty_insertIfNew
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insertIfNew k v).isEmpty = false
@[simp]
theorem
Std.HashMap.contains_insertIfNew
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β},
(m.insertIfNew k v).contains a = (k == a || m.contains a)
theorem
Std.HashMap.contains_insertIfNew_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insertIfNew k v).contains k = true
theorem
Std.HashMap.mem_insertIfNew_self
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
k ∈ m.insertIfNew k v
theorem
Std.HashMap.mem_of_mem_insertIfNew
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α} {v : β},
a ∈ m.insertIfNew k v → (k == a) = false → a ∈ m
This is a restatement of contains_insertIfNew
that is written to exactly match the proof
obligation in the statement of getElem_insertIfNew
.
This is a restatement of mem_insertIfNew
that is written to exactly match the proof obligation
in the statement of getElem_insertIfNew
.
theorem
Std.HashMap.size_insertIfNew
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insertIfNew k v).size = if k ∈ m then m.size else m.size + 1
theorem
Std.HashMap.size_le_size_insertIfNew
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
m.size ≤ (m.insertIfNew k v).size
theorem
Std.HashMap.size_insertIfNew_le
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α} {v : β},
(m.insertIfNew k v).size ≤ m.size + 1
@[simp]
theorem
Std.HashMap.getThenInsertIfNew?_fst
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β}, (m.getThenInsertIfNew? k v).fst = m.get? k
@[simp]
theorem
Std.HashMap.getThenInsertIfNew?_snd
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashMap α β} {k : α} {v : β},
(m.getThenInsertIfNew? k v).snd = m.insertIfNew k v
instance
Std.HashMap.instLawfulGetElemMemOfEquivBEqOfLawfulHashable
{α : Type u}
{β : Type v}
:
∀ {x : BEq α} {x_1 : Hashable α} [inst : EquivBEq α] [inst : LawfulHashable α],
LawfulGetElem (Std.HashMap α β) α β fun (m : Std.HashMap α β) (a : α) => a ∈ m
Equations
- ⋯ = ⋯