- Boxes
- definitions
- Ellipses
- theorems and lemmas
- Blue border
- the statement of this result is ready to be formalized; all prerequisites are done
- Orange border
- the statement of this result is not ready to be formalized; the blueprint needs more work
- Blue background
- the proof of this result is ready to be formalized; all prerequisites are done
- Green border
- the statement of this result is formalized
- Green background
- the proof of this result is formalized
- Dark green background
- the proof of this result and all its ancestors are formalized
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S = (a,b,c,u)\) be a \(solution\) with multiplicity \(n\).
Let \(S_f' = (Y,u_4 Z, \lambda ^{n-1} X, u_5)\).
Then \(S_f'\) is a \(solution'\).
Let \(S\) be a \(solution\).
We define \(u_1 \in \mathcal{O}^\times _K\) and \(X \in \mathcal{O}_K\) such that \(x = u_1 X^3\).
We define \(u_2 \in \mathcal{O}^\times _K\) and \(Y \in \mathcal{O}_K\) such that \(y = u_2 Y^3\).
We define \(u_3 \in \mathcal{O}^\times _K\) and \(Z \in \mathcal{O}_K\) such that \(z = u_3 Z^3\).
We define \(u_4 = \eta u_3 u_2^{-1}\).
We define \(u_5 = -\eta ^2 u_1 u_2^{-1}\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
We define \(x \in \mathcal{O}_K\) such that \(a + b = \lambda ^{3n-2} x\).
We define \(y \in \mathcal{O}_K\) such that \(a + \eta b = \lambda y\).
We define \(z \in \mathcal{O}_K\) such that \(a + \eta ^2 b = \lambda z\).
We define \(w \in \mathcal{O}_K\) such that \(c = \lambda ^n w\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \(a + \eta b = (a + b) + \lambda b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Let \(p \in \mathcal{O}_K\) be a prime such that \(p \mid a+b\) and \(p \mid a+\eta b\).
Then \(p\) is associated with \(\lambda \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Let \(p \in \mathcal{O}_K\) be a prime such that \(p \mid a+b\) and \(p \mid a+\eta ^2 b\).
Then \(p\) is associated with \(\lambda \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Let \(p \in \mathcal{O}_K\) be a prime such that \(p \mid a+\eta b\) and \(p \mid a+\eta ^2 b\).
Then \(p\) is associated with \(\lambda \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(I\) be the ideal generated by \(\lambda \).
Then \(\mathcal{O}_K / I\) has cardinality \(3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(S'=(a, b, c, u)\) be a \(solution'\).
Then \(a^3 + b^3 = (a + b) (a + \eta b) (a + \eta ^2 b)\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(x \in \mathcal{O}_K\).
Then \(x^3 - 1 = (x - 1)(x - \eta )(x - \eta ^2)\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(x \in \mathcal{O}_K\).
Then \((\lambda \mid x) \lor (\lambda \mid x-1) \lor (\lambda \mid x+1)\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(u \in \mathcal{O}^\times _K\) be a unit.
If \(\exists m \in \mathbb {Z}\) such that \(\lambda ^2 \mid u - m\), then \(u = 1 \lor u = -1\).
This is a special case of the Kummer’s Lemma.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \((\eta + 1) (-\eta ) = 1\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Then \(\eta \) is a unit.
To prove Theorem 3.66, it suffices to prove Theorem 3.64.
Equivalently, Theorem 3.64 implies Theorem 3.66.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\) with multiplicity \(n\).
Then \(Y^3 + (u_4 Z)^3 = u_5 (\lambda ^{n-1} X)^3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\) with multiplicity \(n\).
Then \(u_1 X^3 \lambda ^{3n-2}+u_2 \eta Y^3 \lambda + u_3 \eta ^2 Z^3 \lambda = 0\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\) with multiplicity \(n\).
Then \(Y^3 + u_4 Z^3 = u_5 (\lambda ^(n-1) X)^3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \(\lambda \mid a + \eta b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \(\lambda \mid a + \eta ^2 b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(x \in \mathcal{O}_K\).
Then \(\lambda \mid x(x - 1)(x - (\eta + 1))\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda \mid 3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda \neq 0\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda \nmid 2\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid w\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid X\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid x\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid Y\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid y\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid Z\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda \nmid z\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda \) is not a unit.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\) with multiplicity \(n\).
Then \(\lambda ^{3n -2} \mid a + b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(x \in \mathcal{O}_K\).
If \(\lambda \mid x + 1\), then \(\lambda ^4 \mid x ^3 + 1\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(x \in \mathcal{O}_K\).
If \(\lambda \mid x - 1\), then \(\lambda ^4 \mid x^3 - 1\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(x \in \mathcal{O}_K\).
If \(\lambda \nmid x\), then \((\lambda ^4 \mid x^3 - 1) \lor (\lambda ^4 \mid x^3 + 1)\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda \) is prime.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then \(\lambda ^2 = -3 \eta \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\).
Then \(\lambda ^2 \mid \lambda ^4\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S\) be a \(solution\) with multiplicity \(n\).
Then \(\lambda ^2 \mid u_5 (\lambda ^{n - 1} X)^3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S'=(a, b, c, u)\) be a \(solution'\).
Then \((\lambda ^2 \mid a + b) \lor (\lambda ^2 \mid a + \eta b) \lor (\lambda ^2 \mid a + \eta ^2 b)\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \(\lambda ^2 \nmid a + \eta b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(S=(a, b, c, u)\) be a \(solution\).
Then \(\lambda ^2 \nmid a + \eta ^2 b\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then the norm of \(\lambda \) is \(3\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Then the norm of \(\lambda \) is a prime number.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Then \(\eta ^3 = 1\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Then \(\eta ^2 + \eta + 1 = 0\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(I\) be the ideal generated by \(\lambda \).
Let \(2 \in \mathcal{O}_K / I\).
Then \(2 \neq 0\).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(I\) be the ideal generated by \(\lambda \).
Then \(\mathcal{O}_K / I = \left\{ 0, 1, -1\right\} \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(a, b, c \in \mathcal{O}_K\) and \(u \in \mathcal{O}^\times _K\) such that \(c \neq 0\) and \(\gcd (a,b)=1\).
Let \(\lambda \nmid a\), \(\lambda \nmid b\) and \(\lambda \mid c\).
Then \(a^3 + b^3 \neq u c^3\).
To prove Theorem 3.66, it suffices to prove that
Equivalently,
implies Theorem 3.66.
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(\lambda \in \mathcal{O}_K\) be such that \(\lambda = \eta -1\).
Let \(u \in \mathcal{O}^\times _K\) be a unit.
Then \(u \in \left\{ 1, -1, \eta , -\eta , \eta ^2, -\eta ^2\right\} \).
Let \(K = \mathbb {Q}(\zeta _3)\) be the third cyclotomic field.
Let \(\mathcal{O}_K = \mathbb {Z}[\zeta _3]\) be the ring of integers of \(K\).
Let \(\mathcal{O}^\times _K\) be the group of units of \(\mathcal{O}_K\).
Let \(\zeta _3 \in K\) be any primitive third root of unity.
Let \(\eta \in \mathcal{O}_K\) be the element corresponding to \(\zeta _3 \in K\).
Let \(m \in \mathbb {Z}\).
Then \(3 \nmid \eta - m\).