Fermat’s Last Theorem for Exponent 3

1 Preliminaries

This chapter provides the necessary prerequisites used throughout this project. We begin by introducing the notation that will be employed, followed by essential definitions and preliminary results required for formalising our arguments.

1.1 Notation

In this section, we define the notation and symbols that will be consistently used in this work.

Symbol

Description

:=

Definition

Universal quantification

Existential quantification

!

Unique existential quantification

N

Set of natural numbers

Z

Set of integer numbers

Zn

Set of integers modulo n

Q

Set of rational numbers

X/Y

Field extension

[Y:X]

Degree of field extension

×

Cartesian product

[n]

Equivalence class of n

Divisibility relation

Negation of divisibility relation

gcd

Greatest common divisor

ζn

Primitive n-th root of unity


1.2 Definitions

In this section, each definition is articulated as clearly as possible to maximise clarity and precision.

Definition 1.1 Monoid
#

Let X be a non-empty set.
Let :X×XX be an internal composition law on X.

A monoid is a pair M:=(X,) satisfying:

  1. x,y,zX, (xy)z=x(yz)=xyz

  2. eX:xX, xe=ex=x

Definition 1.2 Commutative Monoid
#

Let X be a non-empty set.
Let :X×XX be an internal composition law on X.

A commutative monoid is a pair Mc:=(X,) satisfying:

  1. x,y,zX, (xy)z=x(yz)=xyz

  2. eX:xX, xe=ex=x

  3. x,yX, xy=yx

Definition 1.3 GCD Monoid
#

Let X be a non-empty set.
Let :X×XX be an internal composition law on X.

A gcd monoid is a pair Mgcd:=(X,) satisfying:

  1. x,y,zX, (xy)z=x(yz)=xyz

  2. eX:xX, xe=ex=x

  3. x,yX, xy=yx

  4. x,yX, dX:(dx)(dy)(cX, cxcycd)

Definition 1.4 Group
#

Let X be a non-empty set.
Let :X×XX be an internal composition law on X.

A group is a pair G:=(X,) satisfying:

  1. x,y,zX, (xy)z=x(yz)=xyz

  2. eX:xX, xe=ex=x

  3. xX, xX:xx=xx=e

Definition 1.5 Commutative Group
#

Let X be a non-empty set.
Let :X×XX be an internal composition law on X.

A commutative group is a pair Gc:=(X,) satisfying:

  1. x,y,zX, (xy)z=x(yz)=xyz

  2. eX:xX, xe=ex=x

  3. xX, xX:xx=xx=e

  4. x,yX, xy=yx

Definition 1.6 Semiring
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A semiring is a triple S:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. x,y,zX, (xy)z=x(yz)=xyz

  5. 1X:xX, x1=1x=x

  6. x,y,zX, x(y+z)=xy+xz

  7. x,y,zX, (x+y)z=xz+yz

Definition 1.7 Commutative Semiring
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A commutative semiring is a triple Sc:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. x,y,zX, (xy)z=x(yz)=xyz

  5. x,yX, xy=yx

  6. 1X:xX, x1=1x=x

  7. x,y,zX, x(y+z)=xy+xz

  8. x,y,zX, (x+y)z=xz+yz

Definition 1.8 Ring
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A ring is a triple R:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. 1X:xX, x1=1x=x

  7. x,y,zX, x(y+z)=xy+xz

  8. x,y,zX, (x+y)z=xz+yz

Definition 1.9 Commutative Ring
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A commutative ring is a triple Rc:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. x,yX, xy=yx

  7. 1X:xX, x1=1x=x

  8. x,y,zX, x(y+z)=xy+xz

  9. x,y,zX, (x+y)z=xz+yz

Definition 1.10 Left Ideal
#

Let (X,+,) be a ring.

A left ideal is a subset IX satisfying:

  1. (I,+) is a subgroup of (X,+)

  2. iI, xX, xiI

Definition 1.11 Right Ideal
#

Let (X,+,) be a ring.

A right ideal is a subset IX satisfying:

  1. (I,+) is a subgroup of (X,+)

  2. iI, xX, ixI

Definition 1.12 Ideal
#

Let (X,+,) be a ring.

An ideal or two-sided ideal is a subset IX satisfying:

  1. (I,+) is a subgroup of (X,+)

  2. iI, xX, xiI

  3. iI, xX, ixI

Definition 1.13 Domain
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A domain is a triple D:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. 1X:xX, x1=1x=x

  7. x,y,zX, x(y+z)=xy+xz

  8. x,y,zX, (x+y)z=xz+yz

  9. x,yX, xy=0x=0y=0

Definition 1.14 Commutative Domain
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A commutative or integral domain is a triple Dc:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. x,yX, xy=yx

  7. 1X:xX, x1=1x=x

  8. x,y,zX, x(y+z)=xy+xz

  9. x,y,zX, (x+y)z=xz+yz

  10. x,yX, xy=0x=0y=0

Definition 1.15 Field
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A field is a triple F:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. 1X:xX, x1=1x=x

  7. xX, x1X:xx1=x1x=1

  8. x,y,zX, x(y+z)=xy+xz

  9. x,y,zX, (x+y)z=xz+yz

Definition 1.16 Commutative Field
#

Let X be a non-empty set.
Let +:X×XX be an additive internal composition law on X.
Let :X×XX be a multiplicative internal composition law on X.

A commutative field is a triple Fc:=(X,+,) satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. x,y,zX, (xy)z=x(yz)=xyz

  6. x,yX, xy=yx

  7. 1X:xX, x1=1x=x

  8. xX, x1X:xx1=x1x=1

  9. x,y,zX, x(y+z)=xy+xz

  10. x,y,zX, (x+y)z=xz+yz

Definition 1.17 Fundamental System of Field
#

Let (X,+,) be a field endowed with a topology T.
Let IN be an index set.

A fundamental system of X is a collection U={Ui}iI of open sets in X such that:

  1. iI, 0Ui.

  2. V0, iI:UiV.

Definition 1.18 Vector Space
#

Let X be a non-empty set.
Let (K,+,) be a field.
Let +:X×XX be an additive internal composition law on X.
Let :K×XX be a multiplicative external composition law on X.

A K-vector space or K-linear space is a triple V:=(X,+,)K satisfying:

  1. x,y,zX, (x+y)+z=x+(y+z)=x+y+z

  2. x,yX, x+y=y+x

  3. 0X:xX, x+0=0+x=x

  4. xX, (x)X:x+(x)=(x)+x=0

  5. xX, k,K, kX(Xx)=(kK)Xx

  6. 1K:xX, 1x=x

  7. x,yX, kK, k(x+Xy)=kx+Xky

  8. k,K, xX, (k+K)x=kx+Xx

From now on, we shall employ the notation X in place of the more explicit (X,+,) to denote a field, commutative ring, domain, or similar algebraic structures when the context unambiguously implies the operations involved.

Definition 1.19 Field Extension
#

Let (X,+,) be a field.
Let (Y,+,) be a field such that YX.

A field extension is the pair X/Y such that the operations of Y are those of X restricted to Y.

Definition 1.20 Degree of Field Extension
#

Let (X,+,) be a field.
Let (Y,+,) be a field such that YX.
Let X/Y be a field extension.

The degree of X/Y, denoted as [Y:X], is the dimension of X as a vector space over Y.

Definition 1.21 Algebraic Field Extension
#

Let (X,+,) be a field.
Let (Y,+,) be a field such that YX.

An algebraic field extension is the field extension X/Y such that its degree [Y:X] is finite.

Definition 1.22 Extension Field
#

Let (X,+,) be a field.
Let (Y,+,) be a field such that YX.
Let X/Y be a field extension.

The field X is said to be an extension field of Y.

Definition 1.23 Subfield
#

Let (X,+,) be a field.
Let (Y,+,) be a field such that YX.
Let X/Y be a field extension.

The field Y is said to be a subfield of X.

Definition 1.24 Number Field
#

Let (X,+,) be a field.
Let (Q,+,) be the field of rational numbers such that QX.
Let X/Q be an algebraic field extension.

The extension field X is said to be a number field or an algebraic number field.

Definition 1.25 Root of Unity
#

Let nN+.

A n-th root of unity is an element ζC such that ζn=1.

Definition 1.26 Primitive Root of Unity
#

Let nN+.

A primitive n-th root of unity is an element ζC satisfying:

  1. ζn=1.

  2. kN+, k<nζk1.

Definition 1.27 Cyclotomic Polynomial
#

Let nN+.
Let ζC be a primitive n-th root of unity.

The n-th cyclotomic polynomial is the unique monic polynomial with integer coefficients whose roots are the primitive n-th roots of unity:

Φn(x)=1kngcd(k,n)=1(xζk)
Definition 1.28 Cyclotomic Extension Field
#

Let nN+.
Let ζnC be a primitive n-th root of unity.
Let X be a field.

The n-th cyclotomic extension field or n-th cyclotomic field is a field X(ζn) obtained by adjoining ζn to X.


1.3 Results

In this section, we state some preliminary results that are crucial for the development of our formal proofs.

Theorem 1.29
#

Let pN be prime.

If ζp is a primitive p-th root of unity, then ζp1 is prime.

Proof
Lemma 1.30

Let R be a commutative semiring, domain and normalised gcd monoid.
Let a,b,cR.
Let nN.

Then, to prove Fermat’s Last Theorem for exponent n in R, one can assume, without loss of generality, that gcd(a,b,c)=1.

Proof
Lemma 1.31
#

Let Z9 be the ring of integers modulo 9.
Let Z3 be the ring of integers modulo 3.
Let nZ9.
Let ϕ:Z9Z3 be the canonical ring homomorphism.
Let ϕ(n)0.

Then n3=1n3=8.

Proof