Documentation

Mathlib.Algebra.Algebra.Hom

Homomorphisms of R-algebras #

This file defines bundled homomorphisms of R-algebras.

Main definitions #

Notations #

structure AlgHom (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] extends RingHom :
Type (max v w)

Defining the homomorphism in the category R-Alg.

  • toFun : AB
  • map_one' : self.toFun 1 = 1
  • map_mul' : ∀ (x y : A), self.toFun (x * y) = self.toFun x * self.toFun y
  • map_zero' : self.toFun 0 = 0
  • map_add' : ∀ (x y : A), self.toFun (x + y) = self.toFun x + self.toFun y
  • commutes' : ∀ (r : R), self.toFun ((algebraMap R A) r) = (algebraMap R B) r
Instances For

Defining the homomorphism in the category R-Alg.

Equations

Defining the homomorphism in the category R-Alg.

Equations
  • One or more equations did not get rendered due to their size.
class AlgHomClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [FunLike F A B] extends RingHomClass :

AlgHomClass F R A B asserts F is a type of bundled algebra homomorphisms from A to B.

  • map_mul : ∀ (f : F) (x y : A), f (x * y) = f x * f y
  • map_one : ∀ (f : F), f 1 = 1
  • map_add : ∀ (f : F) (x y : A), f (x + y) = f x + f y
  • map_zero : ∀ (f : F), f 0 = 0
  • commutes : ∀ (f : F) (r : R), f ((algebraMap R A) r) = (algebraMap R B) r
Instances
instance AlgHomClass.linearMapClass {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [FunLike F A B] [AlgHomClass F R A B] :
Equations
  • =
def AlgHomClass.toAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_5} [FunLike F A B] [AlgHomClass F R A B] (f : F) :

Turn an element of a type F satisfying AlgHomClass F α β into an actual AlgHom. This is declared as the default coercion from F to α →+* β.

Equations
  • f = let __spread.0 := f; { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
instance AlgHomClass.coeTC {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_5} [FunLike F A B] [AlgHomClass F R A B] :
CoeTC F (A →ₐ[R] B)
Equations
  • AlgHomClass.coeTC = { coe := AlgHomClass.toAlgHom }
instance AlgHom.funLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
FunLike (A →ₐ[R] B) A B
Equations
  • AlgHom.funLike = { coe := fun (f : A →ₐ[R] B) => f.toFun, coe_injective' := }
instance AlgHom.algHomClass {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
AlgHomClass (A →ₐ[R] B) R A B
Equations
  • =
def AlgHom.Simps.apply {R : Type u} {α : Type v} {β : Type w} [CommSemiring R] [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α →ₐ[R] β) :
αβ

See Note [custom simps projection]

Equations
@[simp]
theorem AlgHom.coe_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_1} [FunLike F A B] [AlgHomClass F R A B] (f : F) :
f = f
@[simp]
theorem AlgHom.toFun_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
f.toFun = f
def AlgHom.toMonoidHom' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
A →* B
Equations
  • f = f
instance AlgHom.coeOutMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
CoeOut (A →ₐ[R] B) (A →* B)
Equations
  • AlgHom.coeOutMonoidHom = { coe := AlgHom.toMonoidHom' }
def AlgHom.toAddMonoidHom' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
A →+ B
Equations
  • f = f
instance AlgHom.coeOutAddMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
CoeOut (A →ₐ[R] B) (A →+ B)
Equations
  • AlgHom.coeOutAddMonoidHom = { coe := AlgHom.toAddMonoidHom' }
@[simp]
theorem AlgHom.coe_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →+* B} (h : ∀ (r : R), f.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
{ toRingHom := f, commutes' := h } = f
theorem AlgHom.coe_mks {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : AB} (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun 0 = 0) (h₄ : ∀ (x y : A), { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun (x + y) = { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun x + { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun y) (h₅ : ∀ (r : R), { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
{ toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ } = f
@[simp]
theorem AlgHom.coe_ringHom_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →+* B} (h : ∀ (r : R), f.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
{ toRingHom := f, commutes' := h } = f
@[simp]
theorem AlgHom.toRingHom_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
f.toRingHom = f
@[simp]
theorem AlgHom.coe_toRingHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
f = f
@[simp]
theorem AlgHom.coe_toMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
f = f
@[simp]
theorem AlgHom.coe_toAddMonoidHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
f = f
theorem AlgHom.coe_fn_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
Function.Injective DFunLike.coe
theorem AlgHom.coe_fn_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} :
φ₁ = φ₂ φ₁ = φ₂
theorem AlgHom.coe_ringHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
Function.Injective RingHomClass.toRingHom
theorem AlgHom.coe_monoidHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
Function.Injective MonoidHomClass.toMonoidHom
theorem AlgHom.coe_addMonoidHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
Function.Injective AddMonoidHomClass.toAddMonoidHom
theorem AlgHom.congr_fun {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} (H : φ₁ = φ₂) (x : A) :
φ₁ x = φ₂ x
theorem AlgHom.congr_arg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {x : A} {y : A} (h : x = y) :
φ x = φ y
theorem AlgHom.ext {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} (H : ∀ (x : A), φ₁ x = φ₂ x) :
φ₁ = φ₂
theorem AlgHom.ext_iff {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {φ₁ : A →ₐ[R] B} {φ₂ : A →ₐ[R] B} :
φ₁ = φ₂ ∀ (x : A), φ₁ x = φ₂ x
@[simp]
theorem AlgHom.mk_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {f : A →ₐ[R] B} (h₁ : f 1 = 1) (h₂ : ∀ (x y : A), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun 0 = 0) (h₄ : ∀ (x y : A), { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun (x + y) = { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun x + { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }.toFun y) (h₅ : ∀ (r : R), { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }.toFun ((algebraMap R A) r) = (algebraMap R B) r) :
{ toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃, map_add' := h₄ }, commutes' := h₅ } = f
@[simp]
theorem AlgHom.commutes {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : R) :
φ ((algebraMap R A) r) = (algebraMap R B) r
theorem AlgHom.comp_algebraMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
theorem AlgHom.map_add {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : A) (s : A) :
φ (r + s) = φ r + φ s
theorem AlgHom.map_zero {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
φ 0 = 0
theorem AlgHom.map_mul {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (y : A) :
φ (x * y) = φ x * φ y
theorem AlgHom.map_one {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
φ 1 = 1
theorem AlgHom.map_pow {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (n : ) :
φ (x ^ n) = φ x ^ n
theorem AlgHom.map_smul {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (r : R) (x : A) :
φ (r x) = r φ x
theorem AlgHom.map_sum {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {ι : Type u_1} (f : ιA) (s : Finset ι) :
φ (Finset.sum s fun (x : ι) => f x) = Finset.sum s fun (x : ι) => φ (f x)
theorem AlgHom.map_finsupp_sum {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {α : Type u_1} [Zero α] {ι : Type u_2} (f : ι →₀ α) (g : ιαA) :
φ (Finsupp.sum f g) = Finsupp.sum f fun (i : ι) (a : α) => φ (g i a)
theorem AlgHom.map_bit0 {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
φ (bit0 x) = bit0 (φ x)
theorem AlgHom.map_bit1 {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
φ (bit1 x) = bit1 (φ x)
def AlgHom.mk' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →+* B) (h : ∀ (c : R) (x : A), f (c x) = c f x) :

If a RingHom is R-linear, then it is an AlgHom.

Equations
  • AlgHom.mk' f h = { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
@[simp]
theorem AlgHom.coe_mk' {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →+* B) (h : ∀ (c : R) (x : A), f (c x) = c f x) :
(AlgHom.mk' f h) = f
def AlgHom.id (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

Identity map as an AlgHom.

Equations
@[simp]
theorem AlgHom.coe_id (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :
(AlgHom.id R A) = id
@[simp]
theorem AlgHom.id_toRingHom (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :
theorem AlgHom.id_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (p : A) :
(AlgHom.id R A) p = p
def AlgHom.comp {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :

Composition of algebra homeomorphisms.

Equations
@[simp]
theorem AlgHom.coe_comp {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
(AlgHom.comp φ₁ φ₂) = φ₁ φ₂
theorem AlgHom.comp_apply {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) :
(AlgHom.comp φ₁ φ₂) p = φ₁ (φ₂ p)
theorem AlgHom.comp_toRingHom {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
(AlgHom.comp φ₁ φ₂) = RingHom.comp φ₁ φ₂
@[simp]
theorem AlgHom.comp_id {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
AlgHom.comp φ (AlgHom.id R A) = φ
@[simp]
theorem AlgHom.id_comp {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) :
AlgHom.comp (AlgHom.id R B) φ = φ
theorem AlgHom.comp_assoc {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
AlgHom.comp (AlgHom.comp φ₁ φ₂) φ₃ = AlgHom.comp φ₁ (AlgHom.comp φ₂ φ₃)
@[simp]
theorem AlgHom.toLinearMap_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (p : A) :
(AlgHom.toLinearMap φ) p = φ p
theorem AlgHom.toLinearMap_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
Function.Injective AlgHom.toLinearMap
@[simp]
theorem AlgHom.comp_toLinearMap {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
@[simp]
theorem AlgHom.toLinearMap_id {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
AlgHom.toLinearMap (AlgHom.id R A) = LinearMap.id
@[simp]
theorem AlgHom.ofLinearMap_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) (a : A) :
(AlgHom.ofLinearMap f map_one map_mul) a = f a
def AlgHom.ofLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) :

Promote a LinearMap to an AlgHom by supplying proofs about the behavior on 1 and *.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AlgHom.ofLinearMap_toLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (map_one : (AlgHom.toLinearMap φ) 1 = 1) (map_mul : ∀ (x y : A), (AlgHom.toLinearMap φ) (x * y) = (AlgHom.toLinearMap φ) x * (AlgHom.toLinearMap φ) y) :
AlgHom.ofLinearMap (AlgHom.toLinearMap φ) map_one map_mul = φ
@[simp]
theorem AlgHom.toLinearMap_ofLinearMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ (x y : A), f (x * y) = f x * f y) :
@[simp]
theorem AlgHom.ofLinearMap_id {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (map_one : LinearMap.id 1 = 1) (map_mul : ∀ (x y : A), LinearMap.id (x * y) = LinearMap.id x * LinearMap.id y) :
AlgHom.ofLinearMap LinearMap.id map_one map_mul = AlgHom.id R A
theorem AlgHom.map_smul_of_tower {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {R' : Type u_1} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R') (x : A) :
φ (r x) = r φ x
theorem AlgHom.map_list_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (s : List A) :
φ (List.prod s) = List.prod (List.map (φ) s)
theorem AlgHom.End_toSemigroup_toMul_mul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (φ₁ : A →ₐ[R] A) (φ₂ : A →ₐ[R] A) :
φ₁ * φ₂ = AlgHom.comp φ₁ φ₂
theorem AlgHom.End_toOne_one {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
1 = AlgHom.id R A
instance AlgHom.End {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
Equations
@[simp]
theorem AlgHom.one_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (x : A) :
1 x = x
@[simp]
theorem AlgHom.mul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (φ : A →ₐ[R] A) (ψ : A →ₐ[R] A) (x : A) :
(φ * ψ) x = φ (ψ x)
theorem AlgHom.algebraMap_eq_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) {y : R} {x : A} (h : (algebraMap R A) y = x) :
(algebraMap R B) y = f x
theorem AlgHom.map_multiset_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (s : Multiset A) :
theorem AlgHom.map_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {ι : Type u_1} (f : ιA) (s : Finset ι) :
φ (Finset.prod s fun (x : ι) => f x) = Finset.prod s fun (x : ι) => φ (f x)
theorem AlgHom.map_finsupp_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) {α : Type u_1} [Zero α] {ι : Type u_2} (f : ι →₀ α) (g : ιαA) :
φ (Finsupp.prod f g) = Finsupp.prod f fun (i : ι) (a : α) => φ (g i a)
theorem AlgHom.map_neg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
φ (-x) = -φ x
theorem AlgHom.map_sub {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B) (x : A) (y : A) :
φ (x - y) = φ x - φ y
def RingHom.toNatAlgHom {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) :

Reinterpret a RingHom as an -algebra homomorphism.

Equations
  • RingHom.toNatAlgHom f = { toRingHom := { toMonoidHom := { toOneHom := { toFun := f, map_one' := }, map_mul' := }, map_zero' := , map_add' := }, commutes' := }
def RingHom.toIntAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :

Reinterpret a RingHom as a -algebra homomorphism.

Equations
theorem RingHom.toIntAlgHom_injective {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] :
Function.Injective RingHom.toIntAlgHom
def RingHom.toRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :

Reinterpret a RingHom as a -algebra homomorphism. This actually yields an equivalence, see RingHom.equivRatAlgHom.

Equations
@[simp]
theorem RingHom.toRatAlgHom_toRingHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :
@[simp]
theorem AlgHom.toRingHom_toRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →ₐ[] S) :
@[simp]
theorem RingHom.equivRatAlgHom_symm_apply {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (self : R →ₐ[] S) :
RingHom.equivRatAlgHom.symm self = self.toRingHom
@[simp]
theorem RingHom.equivRatAlgHom_apply {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] (f : R →+* S) :
RingHom.equivRatAlgHom f = RingHom.toRatAlgHom f
def RingHom.equivRatAlgHom {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] [Algebra R] [Algebra S] :
(R →+* S) (R →ₐ[] S)

The equivalence between RingHom and -algebra homomorphisms.

Equations
  • RingHom.equivRatAlgHom = { toFun := RingHom.toRatAlgHom, invFun := AlgHom.toRingHom, left_inv := , right_inv := }
def Algebra.ofId (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

AlgebraMap as an AlgHom.

Equations
theorem Algebra.ofId_apply {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
(Algebra.ofId R A) r = (algebraMap R A) r
instance Algebra.subsingleton_id {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

This is a special case of a more general instance that we define in a later file.

Equations
  • =
theorem Algebra.ext_id {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (f : R →ₐ[R] A) (g : R →ₐ[R] A) :
f = g

This ext lemma closes trivial subgoals create when chaining heterobasic ext lemmas.

@[simp]
theorem Algebra.smul_units_def {R : Type u} (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] (f : A →ₐ[R] A) (x : Aˣ) :
f x = (Units.map f) x
@[simp]
theorem MulSemiringAction.toAlgHom_apply {M : Type u_1} (R : Type u_3) (A : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [Monoid M] [MulSemiringAction M A] [SMulCommClass M R A] (m : M) (a : A) :
def MulSemiringAction.toAlgHom {M : Type u_1} (R : Type u_3) (A : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [Monoid M] [MulSemiringAction M A] [SMulCommClass M R A] (m : M) :

Each element of the monoid defines an algebra homomorphism.

This is a stronger version of MulSemiringAction.toRingHom and DistribMulAction.toLinearMap.

Equations
  • One or more equations did not get rendered due to their size.