Characteristic of quotients rings #
theorem
CharP.quotient_iff_le_ker_natCast
{R : Type u_1}
[CommRing R]
(n : ℕ)
[CharP R n]
(I : Ideal R)
:
CharP (R ⧸ I) n ↔ Ideal.comap (Nat.castRingHom R) I ≤ RingHom.ker (Nat.castRingHom R)
CharP.quotient_iff
, but stated in terms of inclusions of ideals.
theorem
Ideal.Quotient.index_eq_zero
{R : Type u_1}
[CommRing R]
(I : Ideal R)
:
↑(AddSubgroup.index (Submodule.toAddSubgroup I)) = 0