The Fourier transform #
We set up the Fourier transform for complex-valued functions on finite-dimensional spaces.
Design choices #
In namespace VectorFourier, we define the Fourier integral in the following context:
πis a commutative ring.VandWareπ-modules.eis a unitary additive character ofπ, i.e. anAddChar π circle.ΞΌis a measure onV.Lis aπ-bilinear formV Γ W β π.Eis a complete normedβ-vector space.
With these definitions, we define fourierIntegral to be the map from functions V β E to
functions W β E that sends f to
fun w β¦ β« v in V, e (-L v w) β’ f v βΞΌ,
This includes the cases W is the dual of V and L is the canonical pairing, or W = V and L
is a bilinear form (e.g. an inner product).
In namespace Fourier, we consider the more familiar special case when V = W = π and L is the
multiplication map (but still allowing π to be an arbitrary ring equipped with a measure).
The most familiar case of all is when V = W = π = β, L is multiplication, ΞΌ is volume, and
e is Real.fourierChar, i.e. the character fun x β¦ exp ((2 * Ο * x) * I) (for which we
introduce the notation π in the locale FourierTransform).
Another familiar case (which generalizes the previous one) is when V = W is an inner product space
over β and L is the scalar product. We introduce two notations π for the Fourier transform in
this case and πβ» f (v) = π f (-v) for the inverse Fourier transform. These notations make
in particular sense for V = W = β.
Main results #
At present the only nontrivial lemma we prove is fourierIntegral_continuous, stating that the
Fourier transform of an integrable function is continuous (under mild assumptions).
Fourier theory for functions on general vector spaces #
The Fourier transform integral for f : V β E, with respect to a bilinear form L : V Γ W β π
and an additive character e.
Equations
- VectorFourier.fourierIntegral e ΞΌ L f w = β« (v : V), e (-(L v) w) β’ f v βΞΌ
Instances For
The uniform norm of the Fourier integral of f is bounded by the LΒΉ norm of f.
The Fourier integral converts right-translation into scalar multiplication by a phase factor.
For any w, the Fourier integral is convergent iff f is integrable.
The Fourier integral of an L^1 function is a continuous function.
The Fourier transform satisfies β« π f * g = β« f * π g, i.e., it is self-adjoint.
Version where the multiplication is replaced by a general bilinear form M.
The Fourier transform satisfies β« π f * g = β« f * π g, i.e., it is self-adjoint.
Fourier theory for functions on π #
The Fourier transform integral for f : π β E, with respect to the measure ΞΌ and additive
character e.
Equations
- Fourier.fourierIntegral e ΞΌ f w = VectorFourier.fourierIntegral e ΞΌ (LinearMap.mul π π) f w
Instances For
The uniform norm of the Fourier transform of f is bounded by the LΒΉ norm of f.
The Fourier transform converts right-translation into scalar multiplication by a phase factor.
The standard additive character of β, given by fun x β¦ exp (2 * Ο * x * I).
Equations
- Real.fourierChar = { toFun := fun (z : β) => expMapCircle (2 * Real.pi * z), map_zero_one' := Real.fourierChar.proof_2, map_add_mul' := Real.fourierChar.proof_3 }
Instances For
The standard additive character of β, given by fun x β¦ exp (2 * Ο * x * I).
Equations
- FourierTransform.Β«termπΒ» = Lean.ParserDescr.node `FourierTransform.termπ 1024 (Lean.ParserDescr.symbol "π")
Instances For
The Fourier transform of a function on an inner product space, with respect to the standard
additive character Ο β¦ exp (2 i Ο Ο).
Equations
- Real.fourierIntegral f w = VectorFourier.fourierIntegral Real.fourierChar MeasureTheory.volume (innerβ V) f w
Instances For
The inverse Fourier transform of a function on an inner product space, defined as the Fourier transform but with opposite sign in the exponential.
Equations
- Real.fourierIntegralInv f w = VectorFourier.fourierIntegral Real.fourierChar MeasureTheory.volume (-innerβ V) f w
Instances For
The Fourier transform of a function on an inner product space, with respect to the standard
additive character Ο β¦ exp (2 i Ο Ο).
Equations
- FourierTransform.termπ = Lean.ParserDescr.node `FourierTransform.termπ 1024 (Lean.ParserDescr.symbol "π")
Instances For
The inverse Fourier transform of a function on an inner product space, defined as the Fourier transform but with opposite sign in the exponential.
Equations
- FourierTransform.Β«termπβ»Β» = Lean.ParserDescr.node `FourierTransform.termπβ» 1024 (Lean.ParserDescr.symbol "πβ»")
Instances For
Alias of Real.fourierIntegral_real_eq.