Zero objects #
A category "has a zero object" if it has an object which is both initial and terminal. Having a
zero object provides zero morphisms, as the unique morphisms factoring through the zero object;
see CategoryTheory.Limits.Shapes.ZeroMorphisms
.
References #
- [F. Borceux, Handbook of Categorical Algebra 2][borceux-vol2]
An object X
in a category is a zero object if for every object Y
there is a unique morphism to : X → Y
and a unique morphism from : Y → X
.
This is a characteristic predicate for has_zero_object
.
there are unique morphisms to the object
there are unique morphisms from the object
If h : IsZero X
, then h.to_ Y
is a choice of unique morphism X → Y
.
Equations
- CategoryTheory.Limits.IsZero.to_ h Y = default
If h : is_zero X
, then h.from_ Y
is a choice of unique morphism Y → X
.
Equations
- CategoryTheory.Limits.IsZero.from_ h Y = default
Any two zero objects are isomorphic.
Equations
- CategoryTheory.Limits.IsZero.iso hX hY = { hom := CategoryTheory.Limits.IsZero.to_ hX Y, inv := CategoryTheory.Limits.IsZero.from_ hX Y, hom_inv_id := ⋯, inv_hom_id := ⋯ }
A zero object is in particular initial.
A zero object is in particular terminal.
The (unique) isomorphism between any initial object and the zero object.
The (unique) isomorphism between any terminal object and the zero object.
A category "has a zero object" if it has an object which is both initial and terminal.
- zero : ∃ (X : C), CategoryTheory.Limits.IsZero X
there exists a zero object
Construct a Zero C
for a category with a zero object.
This can not be a global instance as it will trigger for every Zero C
typeclass search.
Equations
- CategoryTheory.Limits.HasZeroObject.zero' C = { zero := Exists.choose ⋯ }
Equations
- ⋯ = ⋯
Every zero object is isomorphic to the zero object.
Equations
There is a unique morphism from the zero object to any object X
.
Equations
There is a unique morphism from any object X
to the zero object.
Equations
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
A zero object is in particular initial.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsInitial = CategoryTheory.Limits.IsZero.isInitial ⋯
A zero object is in particular terminal.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsTerminal = CategoryTheory.Limits.IsZero.isTerminal ⋯
A zero object is in particular initial.
Equations
- ⋯ = ⋯
A zero object is in particular terminal.
Equations
- ⋯ = ⋯
The (unique) isomorphism between any initial object and the zero object.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial t = CategoryTheory.Limits.IsInitial.uniqueUpToIso CategoryTheory.Limits.HasZeroObject.zeroIsInitial t
The (unique) isomorphism between any terminal object and the zero object.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal t = CategoryTheory.Limits.IsTerminal.uniqueUpToIso CategoryTheory.Limits.HasZeroObject.zeroIsTerminal t
The (unique) isomorphism between the chosen initial object and the chosen zero object.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsoInitial = CategoryTheory.Limits.IsInitial.uniqueUpToIso CategoryTheory.Limits.HasZeroObject.zeroIsInitial CategoryTheory.Limits.initialIsInitial
The (unique) isomorphism between the chosen terminal object and the chosen zero object.
Equations
- CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal = CategoryTheory.Limits.IsTerminal.uniqueUpToIso CategoryTheory.Limits.HasZeroObject.zeroIsTerminal CategoryTheory.Limits.terminalIsTerminal
Equations
- ⋯ = ⋯