Documentation

Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects

Zero objects #

A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object; see CategoryTheory.Limits.Shapes.ZeroMorphisms.

References #

An object X in a category is a zero object if for every object Y there is a unique morphism to : X → Y and a unique morphism from : Y → X.

This is a characteristic predicate for has_zero_object.

  • unique_to : ∀ (Y : C), Nonempty (Unique (X Y))

    there are unique morphisms to the object

  • unique_from : ∀ (Y : C), Nonempty (Unique (Y X))

    there are unique morphisms from the object

If h : IsZero X, then h.to_ Y is a choice of unique morphism X → Y.

Equations

If h : is_zero X, then h.from_ Y is a choice of unique morphism Y → X.

Equations
theorem CategoryTheory.Limits.IsZero.eq_of_src {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (hX : CategoryTheory.Limits.IsZero X) (f : X Y) (g : X Y) :
f = g
theorem CategoryTheory.Limits.IsZero.eq_of_tgt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (hX : CategoryTheory.Limits.IsZero X) (f : Y X) (g : Y X) :
f = g

Any two zero objects are isomorphic.

Equations

Construct a Zero C for a category with a zero object. This can not be a global instance as it will trigger for every Zero C typeclass search.

Equations

A zero object is in particular initial.

Equations

A zero object is in particular terminal.

Equations

The (unique) isomorphism between any initial object and the zero object.

Equations

The (unique) isomorphism between any terminal object and the zero object.

Equations

The (unique) isomorphism between the chosen initial object and the chosen zero object.

Equations

The (unique) isomorphism between the chosen terminal object and the chosen zero object.

Equations