Documentation

Mathlib.CategoryTheory.Iso

Isomorphisms #

This file defines isomorphisms between objects of a category.

Main definitions #

Notations #

Tags #

category, category theory, isomorphism

structure CategoryTheory.Iso {C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) (Y : C) :

An isomorphism (a.k.a. an invertible morphism) between two objects of a category. The inverse morphism is bundled.

See also CategoryTheory.Core for the category with the same objects and isomorphisms playing the role of morphisms.

See .

Instances For
@[simp]
theorem CategoryTheory.Iso.hom_inv_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (self : X Y) {Z : C} (h : X Z) :
@[simp]
theorem CategoryTheory.Iso.inv_hom_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (self : X Y) {Z : C} (h : Y Z) :

Notation for an isomorphism in a category.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Iso.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} ⦃α : X Y ⦃β : X Y (w : α.hom = β.hom) :
α = β
def CategoryTheory.Iso.symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (I : X Y) :
Y X

Inverse isomorphism.

Equations
  • I.symm = { hom := I.inv, inv := I.hom, hom_inv_id := , inv_hom_id := }
@[simp]
theorem CategoryTheory.Iso.symm_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
α.symm.hom = α.inv
@[simp]
theorem CategoryTheory.Iso.symm_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
α.symm.inv = α.hom
@[simp]
theorem CategoryTheory.Iso.symm_mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryTheory.CategoryStruct.comp hom inv = CategoryTheory.CategoryStruct.id X) (inv_hom_id : CategoryTheory.CategoryStruct.comp inv hom = CategoryTheory.CategoryStruct.id Y) :
{ hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id }.symm = { hom := inv, inv := hom, hom_inv_id := inv_hom_id, inv_hom_id := hom_inv_id }
@[simp]
theorem CategoryTheory.Iso.symm_symm_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
α.symm.symm = α
@[simp]
theorem CategoryTheory.Iso.symm_eq_iff {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {α : X Y} {β : X Y} :
α.symm = β.symm α = β

Identity isomorphism.

Equations
Equations
@[simp]
theorem CategoryTheory.Iso.trans_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
(α ≪≫ β).hom = CategoryTheory.CategoryStruct.comp α.hom β.hom
@[simp]
theorem CategoryTheory.Iso.trans_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
(α ≪≫ β).inv = CategoryTheory.CategoryStruct.comp β.inv α.inv
def CategoryTheory.Iso.trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
X Z

Composition of two isomorphisms

Equations
@[simp]
theorem CategoryTheory.Iso.instTransIso_trans {C : Type u} [CategoryTheory.Category.{v, u} C] :
∀ {a b c : C} (α : a b) (β : b c), Trans.trans α β = α ≪≫ β
instance CategoryTheory.Iso.instTransIso {C : Type u} [CategoryTheory.Category.{v, u} C] :
Trans (fun (x x_1 : C) => x x_1) (fun (x x_1 : C) => x x_1) fun (x x_1 : C) => x x_1
Equations
  • CategoryTheory.Iso.instTransIso = { trans := fun {a b c : C} => CategoryTheory.Iso.trans }

Notation for composition of isomorphisms.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Iso.trans_mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryTheory.CategoryStruct.comp hom inv = CategoryTheory.CategoryStruct.id X) (inv_hom_id : CategoryTheory.CategoryStruct.comp inv hom = CategoryTheory.CategoryStruct.id Y) (hom' : Y Z) (inv' : Z Y) (hom_inv_id' : CategoryTheory.CategoryStruct.comp hom' inv' = CategoryTheory.CategoryStruct.id Y) (inv_hom_id' : CategoryTheory.CategoryStruct.comp inv' hom' = CategoryTheory.CategoryStruct.id Z) (hom_inv_id'' : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp hom hom') (CategoryTheory.CategoryStruct.comp inv' inv) = CategoryTheory.CategoryStruct.id X) (inv_hom_id'' : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp inv' inv) (CategoryTheory.CategoryStruct.comp hom hom') = CategoryTheory.CategoryStruct.id Z) :
{ hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id } ≪≫ { hom := hom', inv := inv', hom_inv_id := hom_inv_id', inv_hom_id := inv_hom_id' } = { hom := CategoryTheory.CategoryStruct.comp hom hom', inv := CategoryTheory.CategoryStruct.comp inv' inv, hom_inv_id := hom_inv_id'', inv_hom_id := inv_hom_id'' }
@[simp]
theorem CategoryTheory.Iso.trans_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
(α ≪≫ β).symm = β.symm ≪≫ α.symm
@[simp]
theorem CategoryTheory.Iso.trans_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {Z' : C} (α : X Y) (β : Y Z) (γ : Z Z') :
(α ≪≫ β) ≪≫ γ = α ≪≫ β ≪≫ γ
@[simp]
@[simp]
@[simp]
theorem CategoryTheory.Iso.symm_self_id {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
@[simp]
theorem CategoryTheory.Iso.self_symm_id {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
@[simp]
theorem CategoryTheory.Iso.symm_self_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
α.symm ≪≫ α ≪≫ β = β
@[simp]
theorem CategoryTheory.Iso.self_symm_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : X Z) :
α ≪≫ α.symm ≪≫ β = β
theorem CategoryTheory.Iso.inv_comp_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : X Z} {g : Y Z} :
theorem CategoryTheory.Iso.eq_inv_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : X Z} {g : Y Z} :
theorem CategoryTheory.Iso.comp_inv_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : Z Y} {g : Z X} :
theorem CategoryTheory.Iso.eq_comp_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : Z Y} {g : Z X} :
theorem CategoryTheory.Iso.inv_eq_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) (g : X Y) :
f.inv = g.inv f.hom = g.hom
theorem CategoryTheory.Iso.hom_eq_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) (β : Y X) :
α.hom = β.inv β.hom = α.inv
class CategoryTheory.IsIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :

IsIso typeclass expressing that a morphism is invertible.

Instances
noncomputable def CategoryTheory.inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) [I : CategoryTheory.IsIso f] :
Y X

The inverse of a morphism f when we have [IsIso f].

Equations
Instances For
noncomputable def CategoryTheory.asIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) [CategoryTheory.IsIso f] :
X Y

Reinterpret a morphism f with an IsIso f instance as an Iso.

Equations
@[simp]
theorem CategoryTheory.asIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
@[simp]
Equations
  • =
instance CategoryTheory.IsIso.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
Equations
  • =
Equations
  • =
@[simp]
theorem CategoryTheory.IsIso.Iso.inv_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
CategoryTheory.inv f.inv = f.hom
@[simp]
theorem CategoryTheory.IsIso.Iso.inv_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
CategoryTheory.inv f.hom = f.inv
theorem CategoryTheory.Iso.inv_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryTheory.CategoryStruct.comp f.hom g = CategoryTheory.CategoryStruct.id X) :
f.inv = g
theorem CategoryTheory.Iso.inv_ext' {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryTheory.CategoryStruct.comp f.hom g = CategoryTheory.CategoryStruct.id X) :
g = f.inv

All these cancellation lemmas can be solved by simp [cancel_mono] (or simp [cancel_epi]), but with the current design cancel_mono is not a good simp lemma, because it generates a typeclass search.

When we can see syntactically that a morphism is a mono or an epi because it came from an isomorphism, it's fine to do the cancellation via simp.

In the longer term, it might be worth exploring making mono and epi structures, rather than typeclasses, with coercions back to X ⟶ Y. Presumably we could write X ↪ Y and X ↠ Y.

@[simp]
theorem CategoryTheory.Iso.cancel_iso_hom_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (g : Y Z) (g' : Y Z) :
@[simp]
theorem CategoryTheory.Iso.cancel_iso_inv_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : Y X) (g : Y Z) (g' : Y Z) :
@[simp]
theorem CategoryTheory.Iso.cancel_iso_hom_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (f' : X Y) (g : Y Z) :
@[simp]
theorem CategoryTheory.Iso.cancel_iso_inv_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (f' : X Y) (g : Z Y) :
@[simp]
theorem CategoryTheory.Functor.mapIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
(F.mapIso i).inv = F.map i.inv
@[simp]
theorem CategoryTheory.Functor.mapIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
(F.mapIso i).hom = F.map i.hom
def CategoryTheory.Functor.mapIso {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
F.obj X F.obj Y

A functor F : C ⥤ D sends isomorphisms i : X ≅ Y to isomorphisms F.obj X ≅ F.obj Y

Equations
  • F.mapIso i = { hom := F.map i.hom, inv := F.map i.inv, hom_inv_id := , inv_hom_id := }
@[simp]
theorem CategoryTheory.Functor.mapIso_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
F.mapIso i.symm = (F.mapIso i).symm
@[simp]
theorem CategoryTheory.Functor.mapIso_trans {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {Z : C} (i : X Y) (j : Y Z) :
F.mapIso (i ≪≫ j) = F.mapIso i ≪≫ F.mapIso j