Documentation

Mathlib.CategoryTheory.Opposites

Opposite categories #

We provide a category instance on Cᵒᵖ. The morphisms X ⟶ Y are defined to be the morphisms unop Y ⟶ unop X in C.

Here Cᵒᵖ is an irreducible typeclass synonym for C (it is the same one used in the algebra library).

We also provide various mechanisms for constructing opposite morphisms, functors, and natural transformations.

Unfortunately, because we do not have a definitional equality op (op X) = X, there are quite a few variations that are needed in practice.

theorem Quiver.Hom.op_inj {C : Type u₁} [Quiver C] {X : C} {Y : C} :
Function.Injective Quiver.Hom.op
theorem Quiver.Hom.unop_inj {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} :
Function.Injective Quiver.Hom.unop
@[simp]
theorem Quiver.Hom.unop_op {C : Type u₁} [Quiver C] {X : C} {Y : C} (f : X Y) :
f.op.unop = f
@[simp]
theorem Quiver.Hom.op_unop {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.op = f

The opposite category.

See .

Equations
@[simp]
theorem CategoryTheory.op_comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : Y Z} :
@[simp]
theorem CategoryTheory.unopUnop_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
∀ {X Y : Cᵒᵖᵒᵖ} (f : X Y), (CategoryTheory.unopUnop C).map f = f.unop.unop

The functor from the double-opposite of a category to the underlying category.

Equations
@[simp]
theorem CategoryTheory.opOp_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
∀ {X Y : C} (f : X Y), (CategoryTheory.opOp C).map f = f.op.op

The functor from a category to its double-opposite.

Equations

The double opposite category is equivalent to the original.

Equations
  • One or more equations did not get rendered due to their size.

If f is an isomorphism, so is f.op

Equations
  • =

If f.op is an isomorphism f must be too. (This cannot be an instance as it would immediately loop!)

@[simp]
theorem CategoryTheory.Functor.op_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) :
∀ {X Y : Cᵒᵖ} (f : X Y), F.op.map f = (F.map f.unop).op

The opposite of a functor, i.e. considering a functor F : C ⥤ D as a functor Cᵒᵖ ⥤ Dᵒᵖ. In informal mathematics no distinction is made between these.

Equations
  • F.op = { toPrefunctor := { obj := fun (X : Cᵒᵖ) => Opposite.op (F.obj X.unop), map := fun {X Y : Cᵒᵖ} (f : X Y) => (F.map f.unop).op }, map_id := , map_comp := }
Instances For

Given a functor F : Cᵒᵖ ⥤ Dᵒᵖ we can take the "unopposite" functor F : C ⥤ D. In informal mathematics no distinction is made between these.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.opHom_map_app (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] :
∀ {X Y : (CategoryTheory.Functor C D)ᵒᵖ} (α : X Y) (X_1 : Cᵒᵖ), ((CategoryTheory.Functor.opHom C D).map α).app X_1 = (α.unop.app X_1.unop).op

Taking the opposite of a functor is functorial.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.opInv_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] :
∀ {X Y : CategoryTheory.Functor Cᵒᵖ Dᵒᵖ} (α : X Y), (CategoryTheory.Functor.opInv C D).map α = { app := fun (X_1 : C) => (α.app (Opposite.op X_1)).unop, naturality := }.op

Take the "unopposite" of a functor is functorial.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.leftOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C Dᵒᵖ) :
∀ {X Y : Cᵒᵖ} (f : X Y), F.leftOp.map f = (F.map f.unop).unop
@[simp]

Another variant of the opposite of functor, turning a functor C ⥤ Dᵒᵖ into a functor Cᵒᵖ ⥤ D. In informal mathematics no distinction is made.

Equations
  • F.leftOp = { toPrefunctor := { obj := fun (X : Cᵒᵖ) => (F.obj X.unop).unop, map := fun {X Y : Cᵒᵖ} (f : X Y) => (F.map f.unop).unop }, map_id := , map_comp := }
Instances For
@[simp]
theorem CategoryTheory.Functor.rightOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor Cᵒᵖ D) :
∀ {X Y : C} (f : X Y), F.rightOp.map f = (F.map f.op).op

Another variant of the opposite of functor, turning a functor Cᵒᵖ ⥤ D into a functor C ⥤ Dᵒᵖ. In informal mathematics no distinction is made.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
Equations
  • CategoryTheory.Functor.instFullOppositeOppositeOppositeOppositeOp = { preimage := fun (X Y : Cᵒᵖ) (f : F.op.obj X F.op.obj Y) => (F.preimage f.unop).op, witness := }

If F is faithful then the right_op of F is also faithful.

Equations
  • =

If F is faithful then the left_op of F is also faithful.

Equations
  • =

Whenever possible, it is advisable to use the isomorphism rightOpLeftOpIso instead of this equality of functors.

The opposite of a natural transformation.

Equations

The "unopposite" of a natural transformation.

Equations

Given a natural transformation α : F.op ⟶ G.op, we can take the "unopposite" of each component obtaining a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F.unop ⟶ G.unop, we can take the opposite of each component obtaining a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F ⟶ G, for F G : C ⥤ Dᵒᵖ, taking unop of each component gives a natural transformation G.leftOp ⟶ F.leftOp.

Equations

Given a natural transformation α : F.leftOp ⟶ G.leftOp, for F G : C ⥤ Dᵒᵖ, taking op of each component gives a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F ⟶ G, for F G : Cᵒᵖ ⥤ D, taking op of each component gives a natural transformation G.rightOp ⟶ F.rightOp.

Equations

Given a natural transformation α : F.rightOp ⟶ G.rightOp, for F G : Cᵒᵖ ⥤ D, taking unop of each component gives a natural transformation G ⟶ F.

Equations
@[simp]
theorem CategoryTheory.Iso.op_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
(CategoryTheory.Iso.op α).hom = α.hom.op
@[simp]
theorem CategoryTheory.Iso.op_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
(CategoryTheory.Iso.op α).inv = α.inv.op

The opposite isomorphism.

Equations
@[simp]
theorem CategoryTheory.Iso.unop_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
(CategoryTheory.Iso.unop f).inv = f.inv.unop
@[simp]
theorem CategoryTheory.Iso.unop_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
(CategoryTheory.Iso.unop f).hom = f.hom.unop
def CategoryTheory.Iso.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
Y.unop X.unop

The isomorphism obtained from an isomorphism in the opposite category.

Equations

The natural isomorphism between opposite functors G.op ≅ F.op induced by a natural isomorphism between the original functors F ≅ G.

Equations

The natural isomorphism between functors G ≅ F induced by a natural isomorphism between the opposite functors F.op ≅ G.op.

Equations

The natural isomorphism between functors G.unop ≅ F.unop induced by a natural isomorphism between the original functors F ≅ G.

Equations

An equivalence between categories gives an equivalence between the opposite categories.

Equations
  • One or more equations did not get rendered due to their size.

An equivalence between opposite categories gives an equivalence between the original categories.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.opEquiv_symm_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) (g : B.unop A.unop) :
(CategoryTheory.opEquiv A B).symm g = g.op
@[simp]
def CategoryTheory.opEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) :
(A B) (B.unop A.unop)

The equivalence between arrows of the form A ⟶ B and B.unop ⟶ A.unop. Useful for building adjunctions. Note that this (definitionally) gives variants

def opEquiv' (A : C) (B : Cᵒᵖ) : (Opposite.op A ⟶ B) ≃ (B.unop ⟶ A) :=
  opEquiv _ _

def opEquiv'' (A : Cᵒᵖ) (B : C) : (A ⟶ Opposite.op B) ≃ (B ⟶ A.unop) :=
  opEquiv _ _

def opEquiv''' (A B : C) : (Opposite.op A ⟶ Opposite.op B) ≃ (B ⟶ A) :=
  opEquiv _ _
Equations
  • CategoryTheory.opEquiv A B = { toFun := fun (f : A B) => f.unop, invFun := fun (g : B.unop A.unop) => g.op, left_inv := , right_inv := }
Equations
  • =
def CategoryTheory.isoOpEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) :
(A B) (B.unop A.unop)

The equivalence between isomorphisms of the form A ≅ B and B.unop ≅ A.unop.

Note this is definitionally the same as the other three variants:

Equations

The equivalence of functor categories induced by op and unop.

Equations
  • One or more equations did not get rendered due to their size.

The equivalence of functor categories induced by leftOp and rightOp.

Equations
  • One or more equations did not get rendered due to their size.