Bind operation for multisets #
This file defines a few basic operations on Multiset
, notably the monadic bind.
Main declarations #
Multiset.join
: The join, aka union or sum, of multisets.Multiset.bind
: The bind of a multiset-indexed family of multisets.Multiset.product
: Cartesian product of two multisets.Multiset.sigma
: Disjoint sum of multisets in a sigma type.
Join #
theorem
Multiset.coe_join
{α : Type u_1}
(L : List (List α))
:
Multiset.join ↑(List.map Multiset.ofList L) = ↑(List.join L)
@[simp]
theorem
Multiset.join_cons
{α : Type u_1}
(s : Multiset α)
(S : Multiset (Multiset α))
:
Multiset.join (s ::ₘ S) = s + Multiset.join S
@[simp]
theorem
Multiset.join_add
{α : Type u_1}
(S : Multiset (Multiset α))
(T : Multiset (Multiset α))
:
Multiset.join (S + T) = Multiset.join S + Multiset.join T
@[simp]
@[simp]
theorem
Multiset.mem_join
{α : Type u_1}
{a : α}
{S : Multiset (Multiset α)}
:
a ∈ Multiset.join S ↔ ∃ s ∈ S, a ∈ s
@[simp]
theorem
Multiset.card_join
{α : Type u_1}
(S : Multiset (Multiset α))
:
Multiset.card (Multiset.join S) = Multiset.sum (Multiset.map (⇑Multiset.card) S)
theorem
Multiset.rel_join
{α : Type u_1}
{β : Type v}
{r : α → β → Prop}
{s : Multiset (Multiset α)}
{t : Multiset (Multiset β)}
(h : Multiset.Rel (Multiset.Rel r) s t)
:
Multiset.Rel r (Multiset.join s) (Multiset.join t)
Bind #
s.bind f
is the monad bind operation, defined as (s.map f).join
. It is the union of f a
as
a
ranges over s
.
Equations
- Multiset.bind s f = Multiset.join (Multiset.map f s)
Instances For
@[simp]
theorem
Multiset.coe_bind
{α : Type u_1}
{β : Type v}
(l : List α)
(f : α → List β)
:
(Multiset.bind ↑l fun (a : α) => ↑(f a)) = ↑(List.bind l f)
@[simp]
@[simp]
theorem
Multiset.cons_bind
{α : Type u_1}
{β : Type v}
(a : α)
(s : Multiset α)
(f : α → Multiset β)
:
Multiset.bind (a ::ₘ s) f = f a + Multiset.bind s f
@[simp]
theorem
Multiset.singleton_bind
{α : Type u_1}
{β : Type v}
(a : α)
(f : α → Multiset β)
:
Multiset.bind {a} f = f a
@[simp]
theorem
Multiset.add_bind
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(t : Multiset α)
(f : α → Multiset β)
:
Multiset.bind (s + t) f = Multiset.bind s f + Multiset.bind t f
@[simp]
theorem
Multiset.bind_zero
{α : Type u_1}
{β : Type v}
(s : Multiset α)
:
(Multiset.bind s fun (x : α) => 0) = 0
@[simp]
theorem
Multiset.bind_add
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → Multiset β)
(g : α → Multiset β)
:
(Multiset.bind s fun (a : α) => f a + g a) = Multiset.bind s f + Multiset.bind s g
@[simp]
theorem
Multiset.bind_cons
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → β)
(g : α → Multiset β)
:
(Multiset.bind s fun (a : α) => f a ::ₘ g a) = Multiset.map f s + Multiset.bind s g
@[simp]
theorem
Multiset.bind_singleton
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → β)
:
(Multiset.bind s fun (x : α) => {f x}) = Multiset.map f s
@[simp]
theorem
Multiset.mem_bind
{α : Type u_1}
{β : Type v}
{b : β}
{s : Multiset α}
{f : α → Multiset β}
:
b ∈ Multiset.bind s f ↔ ∃ a ∈ s, b ∈ f a
@[simp]
theorem
Multiset.card_bind
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → Multiset β)
:
Multiset.card (Multiset.bind s f) = Multiset.sum (Multiset.map (⇑Multiset.card ∘ f) s)
theorem
Multiset.bind_congr
{α : Type u_1}
{β : Type v}
{f : α → Multiset β}
{g : α → Multiset β}
{m : Multiset α}
:
(∀ a ∈ m, f a = g a) → Multiset.bind m f = Multiset.bind m g
theorem
Multiset.bind_hcongr
{α : Type u_1}
{β : Type v}
{β' : Type v}
{m : Multiset α}
{f : α → Multiset β}
{f' : α → Multiset β'}
(h : β = β')
(hf : ∀ a ∈ m, HEq (f a) (f' a))
:
HEq (Multiset.bind m f) (Multiset.bind m f')
theorem
Multiset.map_bind
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
(m : Multiset α)
(n : α → Multiset β)
(f : β → γ)
:
Multiset.map f (Multiset.bind m n) = Multiset.bind m fun (a : α) => Multiset.map f (n a)
theorem
Multiset.bind_map
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
(m : Multiset α)
(n : β → Multiset γ)
(f : α → β)
:
Multiset.bind (Multiset.map f m) n = Multiset.bind m fun (a : α) => n (f a)
theorem
Multiset.bind_assoc
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
{s : Multiset α}
{f : α → Multiset β}
{g : β → Multiset γ}
:
Multiset.bind (Multiset.bind s f) g = Multiset.bind s fun (a : α) => Multiset.bind (f a) g
theorem
Multiset.bind_bind
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
(m : Multiset α)
(n : Multiset β)
{f : α → β → Multiset γ}
:
(Multiset.bind m fun (a : α) => Multiset.bind n fun (b : β) => f a b) = Multiset.bind n fun (b : β) => Multiset.bind m fun (a : α) => f a b
theorem
Multiset.bind_map_comm
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
(m : Multiset α)
(n : Multiset β)
{f : α → β → γ}
:
(Multiset.bind m fun (a : α) => Multiset.map (fun (b : β) => f a b) n) = Multiset.bind n fun (b : β) => Multiset.map (fun (a : α) => f a b) m
@[simp]
theorem
Multiset.sum_bind
{α : Type u_1}
{β : Type v}
[AddCommMonoid β]
(s : Multiset α)
(t : α → Multiset β)
:
Multiset.sum (Multiset.bind s t) = Multiset.sum (Multiset.map (fun (a : α) => Multiset.sum (t a)) s)
@[simp]
theorem
Multiset.prod_bind
{α : Type u_1}
{β : Type v}
[CommMonoid β]
(s : Multiset α)
(t : α → Multiset β)
:
Multiset.prod (Multiset.bind s t) = Multiset.prod (Multiset.map (fun (a : α) => Multiset.prod (t a)) s)
theorem
Multiset.rel_bind
{α : Type u_1}
{β : Type v}
{γ : Type u_2}
{δ : Type u_3}
{r : α → β → Prop}
{p : γ → δ → Prop}
{s : Multiset α}
{t : Multiset β}
{f : α → Multiset γ}
{g : β → Multiset δ}
(h : (r ⇒ Multiset.Rel p) f g)
(hst : Multiset.Rel r s t)
:
Multiset.Rel p (Multiset.bind s f) (Multiset.bind t g)
theorem
Multiset.count_sum
{α : Type u_1}
{β : Type v}
[DecidableEq α]
{m : Multiset β}
{f : β → Multiset α}
{a : α}
:
Multiset.count a (Multiset.sum (Multiset.map f m)) = Multiset.sum (Multiset.map (fun (b : β) => Multiset.count a (f b)) m)
theorem
Multiset.count_bind
{α : Type u_1}
{β : Type v}
[DecidableEq α]
{m : Multiset β}
{f : β → Multiset α}
{a : α}
:
Multiset.count a (Multiset.bind m f) = Multiset.sum (Multiset.map (fun (b : β) => Multiset.count a (f b)) m)
theorem
Multiset.le_bind
{α : Type u_4}
{β : Type u_5}
{f : α → Multiset β}
(S : Multiset α)
{x : α}
(hx : x ∈ S)
:
f x ≤ Multiset.bind S f
theorem
Multiset.attach_bind_coe
{α : Type u_1}
{β : Type v}
(s : Multiset α)
(f : α → Multiset β)
:
(Multiset.bind (Multiset.attach s) fun (i : { x : α // x ∈ s }) => f ↑i) = Multiset.bind s f
@[simp]
theorem
Multiset.nodup_bind
{α : Type u_1}
{β : Type v}
{s : Multiset α}
{f : α → Multiset β}
:
Multiset.Nodup (Multiset.bind s f) ↔ (∀ a ∈ s, Multiset.Nodup (f a)) ∧ Multiset.Pairwise (fun (a b : α) => Multiset.Disjoint (f a) (f b)) s
@[simp]
theorem
Multiset.dedup_bind_dedup
{α : Type u_1}
{β : Type v}
[DecidableEq α]
[DecidableEq β]
(s : Multiset α)
(f : α → Multiset β)
:
Multiset.dedup (Multiset.bind (Multiset.dedup s) f) = Multiset.dedup (Multiset.bind s f)
Product of two multisets #
The multiplicity of (a, b)
in s ×ˢ t
is
the product of the multiplicity of a
in s
and b
in t
.
Equations
- Multiset.product s t = Multiset.bind s fun (a : α) => Multiset.map (Prod.mk a) t
Instances For
theorem
Multiset.Nodup.product
{α : Type u_1}
{β : Type v}
{s : Multiset α}
{t : Multiset β}
:
Multiset.Nodup s → Multiset.Nodup t → Multiset.Nodup (s ×ˢ t)
Disjoint sum of multisets #
def
Multiset.sigma
{α : Type u_1}
{σ : α → Type u_4}
(s : Multiset α)
(t : (a : α) → Multiset (σ a))
:
Multiset ((a : α) × σ a)
Multiset.sigma s t
is the dependent version of Multiset.product
. It is the sum of
(a, b)
as a
ranges over s
and b
ranges over t a
.
Equations
- Multiset.sigma s t = Multiset.bind s fun (a : α) => Multiset.map (Sigma.mk a) (t a)
Instances For
@[simp]
theorem
Multiset.coe_sigma
{α : Type u_1}
{σ : α → Type u_4}
(l₁ : List α)
(l₂ : (a : α) → List (σ a))
:
(Multiset.sigma ↑l₁ fun (a : α) => ↑(l₂ a)) = ↑(List.sigma l₁ l₂)
@[simp]
theorem
Multiset.zero_sigma
{α : Type u_1}
{σ : α → Type u_4}
(t : (a : α) → Multiset (σ a))
:
Multiset.sigma 0 t = 0
@[simp]
theorem
Multiset.cons_sigma
{α : Type u_1}
{σ : α → Type u_4}
(a : α)
(s : Multiset α)
(t : (a : α) → Multiset (σ a))
:
Multiset.sigma (a ::ₘ s) t = Multiset.map (Sigma.mk a) (t a) + Multiset.sigma s t
@[simp]
theorem
Multiset.sigma_singleton
{α : Type u_1}
{β : Type v}
(a : α)
(b : α → β)
:
(Multiset.sigma {a} fun (a : α) => {b a}) = {{ fst := a, snd := b a }}
@[simp]
theorem
Multiset.add_sigma
{α : Type u_1}
{σ : α → Type u_4}
(s : Multiset α)
(t : Multiset α)
(u : (a : α) → Multiset (σ a))
:
Multiset.sigma (s + t) u = Multiset.sigma s u + Multiset.sigma t u
@[simp]
theorem
Multiset.sigma_add
{α : Type u_1}
{σ : α → Type u_4}
(s : Multiset α)
(t : (a : α) → Multiset (σ a))
(u : (a : α) → Multiset (σ a))
:
(Multiset.sigma s fun (a : α) => t a + u a) = Multiset.sigma s t + Multiset.sigma s u
@[simp]
theorem
Multiset.card_sigma
{α : Type u_1}
{σ : α → Type u_4}
(s : Multiset α)
(t : (a : α) → Multiset (σ a))
:
Multiset.card (Multiset.sigma s t) = Multiset.sum (Multiset.map (fun (a : α) => Multiset.card (t a)) s)
theorem
Multiset.Nodup.sigma
{α : Type u_1}
{s : Multiset α}
{σ : α → Type u_5}
{t : (a : α) → Multiset (σ a)}
:
Multiset.Nodup s → (∀ (a : α), Multiset.Nodup (t a)) → Multiset.Nodup (Multiset.sigma s t)