Documentation

Mathlib.MeasureTheory.Measure.Haar.NormedSpace

Basic properties of Haar measures on real vector spaces #

theorem MeasureTheory.Measure.integral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) (R : โ„) :
โˆซ (x : E), f (R โ€ข x) โˆ‚ฮผ = |(R ^ FiniteDimensional.finrank โ„ E)โปยน| โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_smul_of_nonneg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) (R : โ„) {hR : 0 โ‰ค R} :
โˆซ (x : E), f (R โ€ข x) โˆ‚ฮผ = (R ^ FiniteDimensional.finrank โ„ E)โปยน โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_inv_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) (R : โ„) :
โˆซ (x : E), f (Rโปยน โ€ข x) โˆ‚ฮผ = |R ^ FiniteDimensional.finrank โ„ E| โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_inv_smul_of_nonneg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) {R : โ„} (hR : 0 โ‰ค R) :
โˆซ (x : E), f (Rโปยน โ€ข x) โˆ‚ฮผ = R ^ FiniteDimensional.finrank โ„ E โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.set_integral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) {R : โ„} (s : Set E) (hR : R โ‰  0) :
โˆซ (x : E) in s, f (R โ€ข x) โˆ‚ฮผ = |(R ^ FiniteDimensional.finrank โ„ E)โปยน| โ€ข โˆซ (x : E) in R โ€ข s, f x โˆ‚ฮผ
theorem MeasureTheory.Measure.set_integral_comp_smul_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (f : E โ†’ F) {R : โ„} (s : Set E) (hR : 0 < R) :
โˆซ (x : E) in s, f (R โ€ข x) โˆ‚ฮผ = (R ^ FiniteDimensional.finrank โ„ E)โปยน โ€ข โˆซ (x : E) in R โ€ข s, f x โˆ‚ฮผ
theorem MeasureTheory.Measure.integral_comp_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (a * x) = |aโปยน| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (aโปยน * x) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x * a) = |aโปยน| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x * aโปยน) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_div {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x / a) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.integrable_comp_mul_left_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (R * x)) MeasureTheory.volume โ†” MeasureTheory.Integrable g MeasureTheory.volume
theorem MeasureTheory.Integrable.comp_mul_left' {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : MeasureTheory.Integrable g MeasureTheory.volume) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (R * x)) MeasureTheory.volume
theorem MeasureTheory.integrable_comp_mul_right_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (x * R)) MeasureTheory.volume โ†” MeasureTheory.Integrable g MeasureTheory.volume
theorem MeasureTheory.Integrable.comp_mul_right' {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : MeasureTheory.Integrable g MeasureTheory.volume) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (x * R)) MeasureTheory.volume
theorem MeasureTheory.integrable_comp_div_iff {F : Type u_1} [NormedAddCommGroup F] (g : โ„ โ†’ F) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (x / R)) MeasureTheory.volume โ†” MeasureTheory.Integrable g MeasureTheory.volume
theorem MeasureTheory.Integrable.comp_div {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : MeasureTheory.Integrable g MeasureTheory.volume) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable (fun (x : โ„) => g (x / R)) MeasureTheory.volume
theorem MeasureTheory.integral_comp {E' : Type u_2} {F' : Type u_3} {A : Type u_4} [NormedAddCommGroup E'] [InnerProductSpace โ„ E'] [FiniteDimensional โ„ E'] [MeasurableSpace E'] [BorelSpace E'] [NormedAddCommGroup F'] [InnerProductSpace โ„ F'] [FiniteDimensional โ„ F'] [MeasurableSpace F'] [BorelSpace F'] (f : E' โ‰ƒโ‚—แตข[โ„] F') [NormedAddCommGroup A] [NormedSpace โ„ A] (g : F' โ†’ A) :
โˆซ (x : E'), g (f x) = โˆซ (y : F'), g y