Documentation

Mathlib.Algebra.Star.Subalgebra

Star subalgebras #

A *-subalgebra is a subalgebra of a *-algebra which is closed under *.

The centralizer of a *-closed set is a *-subalgebra.

structure StarSubalgebra (R : Type u) (A : Type v) [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] extends Subalgebra :

A *-subalgebra is a subalgebra of a *-algebra which is closed under *.

  • carrier : Set A
  • mul_mem' : ∀ {a b : A}, a self.carrierb self.carriera * b self.carrier
  • one_mem' : 1 self.carrier
  • add_mem' : ∀ {a b : A}, a self.carrierb self.carriera + b self.carrier
  • zero_mem' : 0 self.carrier
  • algebraMap_mem' : ∀ (r : R), (algebraMap R A) r self.carrier
  • star_mem' : ∀ {a : A}, a self.carrierstar a self.carrier

    The carrier is closed under the star operation.

Instances For
instance StarSubalgebra.setLike {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
Equations
  • StarSubalgebra.setLike = { coe := fun (S : StarSubalgebra R A) => S.carrier, coe_injective' := }
instance StarSubalgebra.starMemClass {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
Equations
  • =
Equations
  • =
instance StarSubalgebra.smulMemClass {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
Equations
  • =
instance StarSubalgebra.subringClass {R : Type u_6} {A : Type u_7} [CommRing R] [StarRing R] [Ring A] [StarRing A] [Algebra R A] [StarModule R A] :
Equations
  • =
instance StarSubalgebra.starRing {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
Equations
instance StarSubalgebra.algebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
Algebra R s
Equations
instance StarSubalgebra.starModule {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
StarModule R s
Equations
  • =
@[simp]
theorem StarSubalgebra.mem_carrier {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {s : StarSubalgebra R A} {x : A} :
x s.carrier x s
theorem StarSubalgebra.ext {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S : StarSubalgebra R A} {T : StarSubalgebra R A} (h : ∀ (x : A), x S x T) :
S = T
@[simp]
theorem StarSubalgebra.coe_mk {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : Subalgebra R A) (h : ∀ {a : A}, a S.carrierstar a S.carrier) :
{ toSubalgebra := S, star_mem' := h } = S
@[simp]
theorem StarSubalgebra.mem_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S : StarSubalgebra R A} {x : A} :
x S.toSubalgebra x S
@[simp]
theorem StarSubalgebra.coe_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
S.toSubalgebra = S
theorem StarSubalgebra.toSubalgebra_injective {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
Function.Injective StarSubalgebra.toSubalgebra
theorem StarSubalgebra.toSubalgebra_inj {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S : StarSubalgebra R A} {U : StarSubalgebra R A} :
S.toSubalgebra = U.toSubalgebra S = U
theorem StarSubalgebra.toSubalgebra_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} :
S₁.toSubalgebra S₂.toSubalgebra S₁ S₂
def StarSubalgebra.copy {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = S) :

Copy of a star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

Equations
@[simp]
theorem StarSubalgebra.coe_copy {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = S) :
(StarSubalgebra.copy S s hs) = s
theorem StarSubalgebra.copy_eq {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = S) :
theorem StarSubalgebra.algebraMap_mem {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (r : R) :
(algebraMap R A) r S
theorem StarSubalgebra.rangeS_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
RingHom.rangeS (algebraMap R A) S.toSubsemiring
theorem StarSubalgebra.range_subset {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
Set.range (algebraMap R A) S
theorem StarSubalgebra.range_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
Set.range (algebraMap R A) S
theorem StarSubalgebra.smul_mem {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) {x : A} (hx : x S) (r : R) :
r x S
def StarSubalgebra.subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
S →⋆ₐ[R] A

Embedding of a subalgebra into the algebra.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem StarSubalgebra.coe_subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
(StarSubalgebra.subtype S) = Subtype.val
theorem StarSubalgebra.subtype_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (x : S) :
@[simp]
theorem StarSubalgebra.toSubalgebra_subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
Subalgebra.val S.toSubalgebra = (StarSubalgebra.subtype S).toAlgHom
@[simp]
theorem StarSubalgebra.inclusion_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂) :
∀ (a : S₁), (StarSubalgebra.inclusion h) a = Subtype.map id h a
def StarSubalgebra.inclusion {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂) :
S₁ →⋆ₐ[R] S₂

The inclusion map between StarSubalgebras given by Subtype.map id as a StarAlgHom.

Equations
  • One or more equations did not get rendered due to their size.
theorem StarSubalgebra.inclusion_injective {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂) :
def StarSubalgebra.map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R A) :

Transport a star subalgebra via a star algebra homomorphism.

Equations
theorem StarSubalgebra.map_mono {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S₁ : StarSubalgebra R A} {S₂ : StarSubalgebra R A} {f : A →⋆ₐ[R] B} :
S₁ S₂StarSubalgebra.map f S₁ StarSubalgebra.map f S₂
@[simp]
theorem StarSubalgebra.map_id {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
theorem StarSubalgebra.map_map {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] [Semiring C] [StarRing C] [Algebra R C] [StarModule R C] (S : StarSubalgebra R A) (g : B →⋆ₐ[R] C) (f : A →⋆ₐ[R] B) :
@[simp]
theorem StarSubalgebra.mem_map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A →⋆ₐ[R] B} {y : B} :
y StarSubalgebra.map f S ∃ x ∈ S, f x = y
theorem StarSubalgebra.map_toSubalgebra {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A →⋆ₐ[R] B} :
(StarSubalgebra.map f S).toSubalgebra = Subalgebra.map f.toAlgHom S.toSubalgebra
@[simp]
theorem StarSubalgebra.coe_map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R A) (f : A →⋆ₐ[R] B) :
(StarSubalgebra.map f S) = f '' S
def StarSubalgebra.comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) :

Preimage of a star subalgebra under a star algebra homomorphism.

Equations
theorem StarSubalgebra.map_le_iff_le_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A →⋆ₐ[R] B} {U : StarSubalgebra R B} :
theorem StarSubalgebra.comap_mono {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S₁ : StarSubalgebra R B} {S₂ : StarSubalgebra R B} {f : A →⋆ₐ[R] B} :
S₁ S₂StarSubalgebra.comap f S₁ StarSubalgebra.comap f S₂
@[simp]
theorem StarSubalgebra.comap_id {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
theorem StarSubalgebra.comap_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] [Semiring C] [StarRing C] [Algebra R C] [StarModule R C] (S : StarSubalgebra R C) (g : B →⋆ₐ[R] C) (f : A →⋆ₐ[R] B) :
@[simp]
theorem StarSubalgebra.mem_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R B) (f : A →⋆ₐ[R] B) (x : A) :
@[simp]
theorem StarSubalgebra.coe_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R B) (f : A →⋆ₐ[R] B) :
(StarSubalgebra.comap f S) = f ⁻¹' S
def StarSubalgebra.centralizer (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : Set A) :

The centralizer, or commutant, of the star-closure of a set as a star subalgebra.

Equations
@[simp]
theorem StarSubalgebra.mem_centralizer_iff (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {s : Set A} {z : A} :
z StarSubalgebra.centralizer R s gs, g * z = z * g star g * z = z * star g

The star closure of a subalgebra #

instance Subalgebra.involutiveStar {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :

The pointwise star of a subalgebra is a subalgebra.

Equations
@[simp]
theorem Subalgebra.mem_star_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) (x : A) :
x star S star x S
theorem Subalgebra.star_mem_star_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) (x : A) :
star x star S x S
@[simp]
theorem Subalgebra.coe_star {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :
(star S) = star S
theorem Subalgebra.star_mono {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
theorem Subalgebra.star_adjoin_comm (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :

The star operation on Subalgebra commutes with Algebra.adjoin.

@[simp]
theorem Subalgebra.starClosure_carrier {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :
(Subalgebra.starClosure S) = ⋂ (t : Subsemiring A), ⋂ (_ : Set.range (algebraMap R A) t S t star S t), t
def Subalgebra.starClosure {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :

The StarSubalgebra obtained from S : Subalgebra R A by taking the smallest subalgebra containing both S and star S.

Equations
theorem Subalgebra.starClosure_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :
(Subalgebra.starClosure S).toSubalgebra = S star S
theorem Subalgebra.starClosure_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : Subalgebra R A} {S₂ : StarSubalgebra R A} (h : S₁ S₂.toSubalgebra) :
theorem Subalgebra.starClosure_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : Subalgebra R A} {S₂ : StarSubalgebra R A} :
Subalgebra.starClosure S₁ S₂ S₁ S₂.toSubalgebra

The star subalgebra generated by a set #

@[simp]
theorem StarSubalgebra.adjoin_carrier (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
(StarSubalgebra.adjoin R s) = ⋂ (t : Subsemiring A), ⋂ (_ : Set.range (algebraMap R A) t s t star s t), t
def StarSubalgebra.adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :

The minimal star subalgebra that contains s.

Equations
theorem StarSubalgebra.adjoin_toSubalgebra (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
(StarSubalgebra.adjoin R s).toSubalgebra = Algebra.adjoin R (s star s)
theorem StarSubalgebra.subset_adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
theorem StarSubalgebra.star_subset_adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
theorem StarSubalgebra.gc {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
def StarSubalgebra.gi {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :

Galois insertion between adjoin and coe.

Equations
  • One or more equations did not get rendered due to their size.
theorem StarSubalgebra.adjoin_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {s : Set A} (hs : s S) :
theorem StarSubalgebra.adjoin_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {s : Set A} :
theorem StarSubalgebra.adjoin_induction {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : AProp} {a : A} (h : a StarSubalgebra.adjoin R s) (mem : xs, p x) (algebraMap : ∀ (r : R), p ((_root_.algebraMap R A) r)) (add : ∀ (x y : A), p xp yp (x + y)) (mul : ∀ (x y : A), p xp yp (x * y)) (star : ∀ (x : A), p xp (Star.star x)) :
p a

If some predicate holds for all x ∈ (s : Set A) and this predicate is closed under the algebraMap, addition, multiplication and star operations, then it holds for a ∈ adjoin R s.

theorem StarSubalgebra.adjoin_induction₂ {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : AAProp} {a : A} {b : A} (ha : a StarSubalgebra.adjoin R s) (hb : b StarSubalgebra.adjoin R s) (Hs : xs, ys, p x y) (Halg : ∀ (r₁ r₂ : R), p ((algebraMap R A) r₁) ((algebraMap R A) r₂)) (Halg_left : ∀ (r : R), xs, p ((algebraMap R A) r) x) (Halg_right : ∀ (r : R), xs, p x ((algebraMap R A) r)) (Hadd_left : ∀ (x₁ x₂ y : A), p x₁ yp x₂ yp (x₁ + x₂) y) (Hadd_right : ∀ (x y₁ y₂ : A), p x y₁p x y₂p x (y₁ + y₂)) (Hmul_left : ∀ (x₁ x₂ y : A), p x₁ yp x₂ yp (x₁ * x₂) y) (Hmul_right : ∀ (x y₁ y₂ : A), p x y₁p x y₂p x (y₁ * y₂)) (Hstar : ∀ (x y : A), p x yp (star x) (star y)) (Hstar_left : ∀ (x y : A), p x yp (star x) y) (Hstar_right : ∀ (x y : A), p x yp x (star y)) :
p a b
theorem StarSubalgebra.adjoin_induction' {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : (StarSubalgebra.adjoin R s)Prop} (a : (StarSubalgebra.adjoin R s)) (mem : ∀ (x : A) (h : x s), p { val := x, property := }) (algebraMap : ∀ (r : R), p ((_root_.algebraMap R (StarSubalgebra.adjoin R s)) r)) (add : ∀ (x y : (StarSubalgebra.adjoin R s)), p xp yp (x + y)) (mul : ∀ (x y : (StarSubalgebra.adjoin R s)), p xp yp (x * y)) (star : ∀ (x : (StarSubalgebra.adjoin R s)), p xp (Star.star x)) :
p a

The difference with StarSubalgebra.adjoin_induction is that this acts on the subtype.

@[reducible]
def StarSubalgebra.adjoinCommSemiringOfComm (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} (hcomm : as, bs, a * b = b * a) (hcomm_star : as, bs, a * star b = star b * a) :

If all elements of s : Set A commute pairwise and also commute pairwise with elements of star s, then StarSubalgebra.adjoin R s is commutative. See note [reducible non-instances].

Equations
@[reducible]
def StarSubalgebra.adjoinCommRingOfComm (R : Type u) {A : Type v} [CommRing R] [StarRing R] [Ring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} (hcomm : as, bs, a * b = b * a) (hcomm_star : as, bs, a * star b = star b * a) :

If all elements of s : Set A commute pairwise and also commute pairwise with elements of star s, then StarSubalgebra.adjoin R s is commutative. See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.

The star subalgebra StarSubalgebra.adjoin R {x} generated by a single x : A is commutative if x is normal.

Equations

The star subalgebra StarSubalgebra.adjoin R {x} generated by a single x : A is commutative if x is normal.

Equations

Complete lattice structure #

Equations
instance StarSubalgebra.inhabited {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
Equations
  • StarSubalgebra.inhabited = { default := }
@[simp]
theorem StarSubalgebra.coe_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
= Set.univ
@[simp]
theorem StarSubalgebra.mem_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {x : A} :
@[simp]
theorem StarSubalgebra.top_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
.toSubalgebra =
@[simp]
theorem StarSubalgebra.toSubalgebra_eq_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} :
S.toSubalgebra = S =
theorem StarSubalgebra.mem_sup_left {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {T : StarSubalgebra R A} {x : A} :
x Sx S T
theorem StarSubalgebra.mem_sup_right {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {T : StarSubalgebra R A} {x : A} :
x Tx S T
theorem StarSubalgebra.mul_mem_sup {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {T : StarSubalgebra R A} {x : A} {y : A} (hx : x S) (hy : y T) :
x * y S T
theorem StarSubalgebra.map_sup {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R A) (T : StarSubalgebra R A) :
@[simp]
theorem StarSubalgebra.coe_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : StarSubalgebra R A) (T : StarSubalgebra R A) :
(S T) = S T
@[simp]
theorem StarSubalgebra.mem_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {T : StarSubalgebra R A} {x : A} :
x S T x S x T
@[simp]
theorem StarSubalgebra.inf_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : StarSubalgebra R A) (T : StarSubalgebra R A) :
(S T).toSubalgebra = S.toSubalgebra T.toSubalgebra
@[simp]
theorem StarSubalgebra.coe_sInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Set (StarSubalgebra R A)) :
(sInf S) = ⋂ s ∈ S, s
theorem StarSubalgebra.mem_sInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : Set (StarSubalgebra R A)} {x : A} :
x sInf S pS, x p
@[simp]
theorem StarSubalgebra.sInf_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Set (StarSubalgebra R A)) :
(sInf S).toSubalgebra = sInf (StarSubalgebra.toSubalgebra '' S)
@[simp]
theorem StarSubalgebra.coe_iInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ι : Sort u_5} {S : ιStarSubalgebra R A} :
(⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
theorem StarSubalgebra.mem_iInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ι : Sort u_5} {S : ιStarSubalgebra R A} {x : A} :
x ⨅ (i : ι), S i ∀ (i : ι), x S i
@[simp]
theorem StarSubalgebra.iInf_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ι : Sort u_5} (S : ιStarSubalgebra R A) :
(⨅ (i : ι), S i).toSubalgebra = ⨅ (i : ι), (S i).toSubalgebra
theorem StarSubalgebra.bot_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
.toSubalgebra =
theorem StarSubalgebra.mem_bot {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {x : A} :
@[simp]
theorem StarSubalgebra.coe_bot {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
theorem StarSubalgebra.eq_top_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} :
S = ∀ (x : A), x S
def StarAlgHom.equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] (f : F) (g : F) :

The equalizer of two star R-algebra homomorphisms.

Equations
@[simp]
theorem StarAlgHom.mem_equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] (f : F) (g : F) (x : A) :
theorem StarAlgHom.adjoin_le_equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] (f : F) (g : F) {s : Set A} (h : Set.EqOn (f) (g) s) :
theorem StarAlgHom.ext_of_adjoin_eq_top {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [FunLike F A B] [AlgHomClass F R A B] [StarAlgHomClass F R A B] {s : Set A} (h : StarSubalgebra.adjoin R s = ) ⦃f : F ⦃g : F (hs : Set.EqOn (f) (g) s) :
f = g
theorem StarAlgHom.map_adjoin {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (s : Set A) :
theorem StarAlgHom.ext_adjoin {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] {s : Set A} [FunLike F ((StarSubalgebra.adjoin R s)) B] [AlgHomClass F R ((StarSubalgebra.adjoin R s)) B] [StarAlgHomClass F R ((StarSubalgebra.adjoin R s)) B] {f : F} {g : F} (h : ∀ (x : (StarSubalgebra.adjoin R s)), x sf x = g x) :
f = g
theorem StarAlgHom.ext_adjoin_singleton {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] {a : A} [FunLike F ((StarSubalgebra.adjoin R {a})) B] [AlgHomClass F R ((StarSubalgebra.adjoin R {a})) B] [StarAlgHomClass F R ((StarSubalgebra.adjoin R {a})) B] {f : F} {g : F} (h : f { val := a, property := } = g { val := a, property := }) :
f = g
def StarAlgHom.range {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (φ : A →⋆ₐ[R] B) :

Range of a StarAlgHom as a star subalgebra.

Equations
theorem StarAlgHom.range_eq_map_top {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (φ : A →⋆ₐ[R] B) :
def StarAlgHom.codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : ∀ (x : A), f x S) :
A →⋆ₐ[R] S

Restriction of the codomain of a StarAlgHom to a star subalgebra containing the range.

Equations
@[simp]
theorem StarAlgHom.coe_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : ∀ (x : A), f x S) (x : A) :
((StarAlgHom.codRestrict f S hf) x) = f x
@[simp]
theorem StarAlgHom.subtype_comp_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : ∀ (x : A), f x S) :
theorem StarAlgHom.injective_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : ∀ (x : A), f x S) :
def StarAlgHom.rangeRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) :

Restriction of the codomain of a StarAlgHom to its range.

Equations
@[simp]
theorem StarAlgEquiv.ofInjective_symm_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective f) :
∀ (a : (AlgHom.range f)), (StarAlgEquiv.symm (StarAlgEquiv.ofInjective f hf)) a = (AlgEquiv.ofInjective (f) hf).invFun a
@[simp]
theorem StarAlgEquiv.ofInjective_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective f) (a : A) :
noncomputable def StarAlgEquiv.ofInjective {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective f) :

The StarAlgEquiv onto the range corresponding to an injective StarAlgHom.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem StarAlgHom.restrictScalars_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A →⋆ₐ[S] B) :
∀ (a : A), (StarAlgHom.restrictScalars R f) a = f a
def StarAlgHom.restrictScalars (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A →⋆ₐ[S] B) :
Equations
theorem StarAlgHom.restrictScalars_injective (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] :
@[simp]
theorem StarAlgEquiv.restrictScalars_symm_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) :
∀ (a : B), (StarAlgEquiv.symm (StarAlgEquiv.restrictScalars R f)) a = f.invFun a
@[simp]
theorem StarAlgEquiv.restrictScalars_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) (a : A) :
def StarAlgEquiv.restrictScalars (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) :
Equations
  • One or more equations did not get rendered due to their size.