Documentation

Mathlib.CategoryTheory.Category.Preorder

Preorders as categories #

We install a category instance on any preorder. This is not to be confused with the category of preorders, defined in Order.Category.Preorder.

We show that monotone functions between preorders correspond to functors of the associated categories.

Main definitions #

The category structure coming from a preorder. There is a morphism X ⟶ Y if and only if X ≤ Y.

Because we don't allow morphisms to live in Prop, we have to define X ⟶ Y as ULift (PLift (X ≤ Y)). See CategoryTheory.homOfLE and CategoryTheory.leOfHom.

See .

Equations
instance Preorder.subsingleton_hom {α : Type u} [Preorder α] (U : α) (V : α) :
Equations
  • =
def CategoryTheory.homOfLE {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
x y

Express an inequality as a morphism in the corresponding preorder category.

Equations
def LE.le.hom {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
x y

Alias of CategoryTheory.homOfLE.


Express an inequality as a morphism in the corresponding preorder category.

Equations
theorem CategoryTheory.leOfHom {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
x y

Extract the underlying inequality from a morphism in a preorder category.

theorem Quiver.Hom.le {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
x y

Alias of CategoryTheory.leOfHom.


Extract the underlying inequality from a morphism in a preorder category.

theorem CategoryTheory.leOfHom_homOfLE {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
= h
theorem CategoryTheory.homOfLE_leOfHom {X : Type u} [Preorder X] {x : X} {y : X} (h : x y) :
LE.le.hom = h
def CategoryTheory.opHomOfLE {X : Type u} [Preorder X] {x : Xᵒᵖ} {y : Xᵒᵖ} (h : x.unop y.unop) :
y x

Construct a morphism in the opposite of a preorder category from an inequality.

Equations
theorem CategoryTheory.le_of_op_hom {X : Type u} [Preorder X] {x : Xᵒᵖ} {y : Xᵒᵖ} (h : x y) :
y.unop x.unop
instance CategoryTheory.uniqueToTop {X : Type u} [Preorder X] [OrderTop X] {x : X} :
Equations
instance CategoryTheory.uniqueFromBot {X : Type u} [Preorder X] [OrderBot X] {x : X} :
Equations
def Monotone.functor {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] {f : XY} (h : Monotone f) :

A monotone function between preorders induces a functor between the associated categories.

Equations
@[simp]
theorem Monotone.functor_obj {X : Type u} {Y : Type v} [Preorder X] [Preorder Y] {f : XY} (h : Monotone f) :

A functor between preorder categories is monotone.

theorem CategoryTheory.Iso.to_eq {X : Type u} [PartialOrder X] {x : X} {y : X} (f : x y) :
x = y

A categorical equivalence between partial orders is just an order isomorphism.

Equations
@[simp]
theorem CategoryTheory.Equivalence.toOrderIso_apply {X : Type u} {Y : Type v} [PartialOrder X] [PartialOrder Y] (e : X Y) (x : X) :