Documentation

Mathlib.RingTheory.NonUnitalSubsemiring.Basic

Bundled non-unital subsemirings #

We define bundled non-unital subsemirings and some standard constructions: CompleteLattice structure, subtype and inclusion ring homomorphisms, non-unital subsemiring map, comap and range (srange) of a NonUnitalRingHom etc.

NonUnitalSubsemiringClass S R states that S is a type of subsets s ⊆ R that are both an additive submonoid and also a multiplicative subsemigroup.

  • add_mem : ∀ {s : S} {a b : R}, a sb sa + b s
  • zero_mem : ∀ (s : S), 0 s
  • mul_mem : ∀ {s : S} {a b : R}, a sb sa * b s
Instances

The natural non-unital ring hom from a non-unital subsemiring of a non-unital semiring R to R.

Equations
  • One or more equations did not get rendered due to their size.

Note: currently, there are no ordered versions of non-unital rings.

A non-unital subsemiring of a non-unital semiring R is a subset s that is both an additive submonoid and a semigroup.

  • carrier : Set R
  • add_mem' : ∀ {a b : R}, a self.carrierb self.carriera + b self.carrier
  • zero_mem' : 0 self.carrier
  • mul_mem' : ∀ {a b : R}, a self.carrierb self.carriera * b self.carrier

    The product of two elements of a subsemigroup belongs to the subsemigroup.

Instances For
@[reducible]

Reinterpret a NonUnitalSubsemiring as a Subsemigroup.

Equations
Equations
  • NonUnitalSubsemiring.instSetLikeNonUnitalSubsemiring = { coe := fun (s : NonUnitalSubsemiring R) => s.carrier, coe_injective' := }
theorem NonUnitalSubsemiring.ext {R : Type u} [NonUnitalNonAssocSemiring R] {S : NonUnitalSubsemiring R} {T : NonUnitalSubsemiring R} (h : ∀ (x : R), x S x T) :
S = T

Two non-unital subsemirings are equal if they have the same elements.

Copy of a non-unital subsemiring with a new carrier equal to the old one. Useful to fix definitional equalities.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonUnitalSubsemiring.coe_copy {R : Type u} [NonUnitalNonAssocSemiring R] (S : NonUnitalSubsemiring R) (s : Set R) (hs : s = S) :
theorem NonUnitalSubsemiring.toSubsemigroup_mono {R : Type u} [NonUnitalNonAssocSemiring R] :
Monotone NonUnitalSubsemiring.toSubsemigroup
theorem NonUnitalSubsemiring.toAddSubmonoid_mono {R : Type u} [NonUnitalNonAssocSemiring R] :
Monotone NonUnitalSubsemiring.toAddSubmonoid
def NonUnitalSubsemiring.mk' {R : Type u} [NonUnitalNonAssocSemiring R] (s : Set R) (sg : Subsemigroup R) (hg : sg = s) (sa : AddSubmonoid R) (ha : sa = s) :

Construct a NonUnitalSubsemiring R from a set s, a subsemigroup sg, and an additive submonoid sa such that x ∈ s ↔ x ∈ sg ↔ x ∈ sa.

Equations
  • NonUnitalSubsemiring.mk' s sg hg sa ha = { toAddSubmonoid := { toAddSubsemigroup := { carrier := s, add_mem' := }, zero_mem' := }, mul_mem' := }
@[simp]
theorem NonUnitalSubsemiring.coe_mk' {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
(NonUnitalSubsemiring.mk' s sg hg sa ha) = s
@[simp]
theorem NonUnitalSubsemiring.mem_mk' {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) {x : R} :
x NonUnitalSubsemiring.mk' s sg hg sa ha x s
@[simp]
theorem NonUnitalSubsemiring.mk'_toSubsemigroup {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
@[simp]
theorem NonUnitalSubsemiring.mk'_toAddSubmonoid {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {sg : Subsemigroup R} (hg : sg = s) {sa : AddSubmonoid R} (ha : sa = s) :
(NonUnitalSubsemiring.mk' s sg hg sa ha).toAddSubmonoid = sa
@[simp]
theorem NonUnitalSubsemiring.coe_add {R : Type u} [NonUnitalNonAssocSemiring R] (s : NonUnitalSubsemiring R) (x : s) (y : s) :
(x + y) = x + y
@[simp]
theorem NonUnitalSubsemiring.coe_mul {R : Type u} [NonUnitalNonAssocSemiring R] (s : NonUnitalSubsemiring R) (x : s) (y : s) :
(x * y) = x * y

Note: currently, there are no ordered versions of non-unital rings.

@[simp]
theorem NonUnitalSubsemiring.mem_toAddSubmonoid {R : Type u} [NonUnitalNonAssocSemiring R] {s : NonUnitalSubsemiring R} {x : R} :
x s.toAddSubmonoid x s
@[simp]

The non-unital subsemiring R of the non-unital semiring R.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem NonUnitalSubsemiring.topEquiv_symm_apply_coe {R : Type u} [NonUnitalNonAssocSemiring R] (x : R) :
((RingEquiv.symm NonUnitalSubsemiring.topEquiv) x) = x
@[simp]
theorem NonUnitalSubsemiring.topEquiv_apply {R : Type u} [NonUnitalNonAssocSemiring R] (x : ) :
NonUnitalSubsemiring.topEquiv x = x

The ring equiv between the top element of NonUnitalSubsemiring R and R.

Equations
  • NonUnitalSubsemiring.topEquiv = let __src := Subsemigroup.topEquiv; let __src_1 := AddSubmonoid.topEquiv; { toEquiv := __src.toEquiv, map_mul' := , map_add' := }

The preimage of a non-unital subsemiring along a non-unital ring homomorphism is a non-unital subsemiring.

Equations
  • One or more equations did not get rendered due to their size.

The image of a non-unital subsemiring along a ring homomorphism is a non-unital subsemiring.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonUnitalSubsemiring.mem_map {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubsemiring R} {y : S} :
y NonUnitalSubsemiring.map f s ∃ x ∈ s, f x = y

A non-unital subsemiring is isomorphic to its image under an injective function

Equations

The range of a non-unital ring homomorphism is a non-unital subsemiring. See note [range copy pattern].

Equations
@[simp]
theorem NonUnitalRingHom.mem_srange {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {y : S} :
y NonUnitalRingHom.srange f ∃ (x : R), f x = y

The range of a morphism of non-unital semirings is finite if the domain is a finite.

Equations
  • =
Equations
  • NonUnitalSubsemiring.instBotNonUnitalSubsemiring = { bot := { toAddSubmonoid := { toAddSubsemigroup := { carrier := {0}, add_mem' := }, zero_mem' := }, mul_mem' := } }
Equations
  • NonUnitalSubsemiring.instInhabitedNonUnitalSubsemiring = { default := }

The inf of two non-unital subsemirings is their intersection.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NonUnitalSubsemiring.coe_sInf {R : Type u} [NonUnitalNonAssocSemiring R] (S : Set (NonUnitalSubsemiring R)) :
(sInf S) = ⋂ s ∈ S, s
theorem NonUnitalSubsemiring.mem_sInf {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} {x : R} :
x sInf S pS, x p
@[simp]
theorem NonUnitalSubsemiring.sInf_toAddSubmonoid {R : Type u} [NonUnitalNonAssocSemiring R] (s : Set (NonUnitalSubsemiring R)) :
(sInf s).toAddSubmonoid = ⨅ t ∈ s, t.toAddSubmonoid

Non-unital subsemirings of a non-unital semiring form a complete lattice.

Equations

The center of a semiring R is the set of elements that commute and associate with everything in R

Equations

The center is commutative and associative.

Equations
  • One or more equations did not get rendered due to their size.

A point-free means of proving membership in the center, for a non-associative ring.

This can be helpful when working with types that have ext lemmas for R →+ R.

The centralizer of a set as non-unital subsemiring.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]

The non-unital subsemiring generated by a set includes the set.

@[simp]

A non-unital subsemiring S includes closure s if and only if it includes s.

Subsemiring closure of a set is monotone in its argument: if s ⊆ t, then closure s ≤ closure t.

The additive closure of a non-unital subsemigroup is a non-unital subsemiring.

Equations

The elements of the non-unital subsemiring closure of M are exactly the elements of the additive closure of a multiplicative subsemigroup M.

theorem NonUnitalSubsemiring.closure_induction {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {p : RProp} {x : R} (h : x NonUnitalSubsemiring.closure s) (mem : xs, p x) (zero : p 0) (add : ∀ (x y : R), p xp yp (x + y)) (mul : ∀ (x y : R), p xp yp (x * y)) :
p x

An induction principle for closure membership. If p holds for 0, 1, and all elements of s, and is preserved under addition and multiplication, then p holds for all elements of the closure of s.

theorem NonUnitalSubsemiring.closure_induction₂ {R : Type u} [NonUnitalNonAssocSemiring R] {s : Set R} {p : RRProp} {x : R} {y : R} (hx : x NonUnitalSubsemiring.closure s) (hy : y NonUnitalSubsemiring.closure s) (Hs : xs, ys, p x y) (H0_left : ∀ (x : R), p 0 x) (H0_right : ∀ (x : R), p x 0) (Hadd_left : ∀ (x₁ x₂ y : R), p x₁ yp x₂ yp (x₁ + x₂) y) (Hadd_right : ∀ (x y₁ y₂ : R), p x y₁p x y₂p x (y₁ + y₂)) (Hmul_left : ∀ (x₁ x₂ y : R), p x₁ yp x₂ yp (x₁ * x₂) y) (Hmul_right : ∀ (x y₁ y₂ : R), p x y₁p x y₂p x (y₁ * y₂)) :
p x y

An induction principle for closure membership for predicates with two arguments.

def NonUnitalSubsemiring.gi (R : Type u) [NonUnitalNonAssocSemiring R] :
GaloisInsertion NonUnitalSubsemiring.closure SetLike.coe

closure forms a Galois insertion with the coercion to set.

Equations

Closure of a non-unital subsemiring S equals S.

theorem NonUnitalSubsemiring.closure_iUnion {R : Type u} [NonUnitalNonAssocSemiring R] {ι : Sort u_2} (s : ιSet R) :
NonUnitalSubsemiring.closure (⋃ (i : ι), s i) = ⨆ (i : ι), NonUnitalSubsemiring.closure (s i)

Given NonUnitalSubsemirings s, t of semirings R, S respectively, s.prod t is s × t as a non-unital subsemiring of R × S.

Equations
  • One or more equations did not get rendered due to their size.
theorem NonUnitalSubsemiring.prod_mono {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] ⦃s₁ : NonUnitalSubsemiring R ⦃s₂ : NonUnitalSubsemiring R (hs : s₁ s₂) ⦃t₁ : NonUnitalSubsemiring S ⦃t₂ : NonUnitalSubsemiring S (ht : t₁ t₂) :

Product of non-unital subsemirings is isomorphic to their product as semigroups.

Equations
theorem NonUnitalSubsemiring.mem_iSup_of_directed {R : Type u} [NonUnitalNonAssocSemiring R] {ι : Sort u_2} [hι : Nonempty ι] {S : ιNonUnitalSubsemiring R} (hS : Directed (fun (x x_1 : NonUnitalSubsemiring R) => x x_1) S) {x : R} :
x ⨆ (i : ι), S i ∃ (i : ι), x S i
theorem NonUnitalSubsemiring.coe_iSup_of_directed {R : Type u} [NonUnitalNonAssocSemiring R] {ι : Sort u_2} [hι : Nonempty ι] {S : ιNonUnitalSubsemiring R} (hS : Directed (fun (x x_1 : NonUnitalSubsemiring R) => x x_1) S) :
(⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
theorem NonUnitalSubsemiring.mem_sSup_of_directedOn {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} (Sne : Set.Nonempty S) (hS : DirectedOn (fun (x x_1 : NonUnitalSubsemiring R) => x x_1) S) {x : R} :
x sSup S ∃ s ∈ S, x s
theorem NonUnitalSubsemiring.coe_sSup_of_directedOn {R : Type u} [NonUnitalNonAssocSemiring R] {S : Set (NonUnitalSubsemiring R)} (Sne : Set.Nonempty S) (hS : DirectedOn (fun (x x_1 : NonUnitalSubsemiring R) => x x_1) S) :
(sSup S) = ⋃ s ∈ S, s
def NonUnitalRingHom.codRestrict {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {S' : Type u_2} [SetLike S' S] [NonUnitalSubsemiringClass S' S] (f : F) (s : S') (h : ∀ (x : R), f x s) :
R →ₙ+* s

Restriction of a non-unital ring homomorphism to a non-unital subsemiring of the codomain.

Equations
  • NonUnitalRingHom.codRestrict f s h = { toMulHom := { toFun := fun (n : R) => { val := f n, property := }, map_mul' := }, map_zero' := , map_add' := }

Restriction of a non-unital ring homomorphism to its range interpreted as a non-unital subsemiring.

This is the bundled version of Set.rangeFactorization.

Equations
@[simp]

The range of a surjective non-unital ring homomorphism is the whole of the codomain.

The non-unital subsemiring of elements x : R such that f x = g x

Equations
  • One or more equations did not get rendered due to their size.
theorem NonUnitalRingHom.eqOn_sclosure {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {g : F} {s : Set R} (h : Set.EqOn (f) (g) s) :

If two non-unital ring homomorphisms are equal on a set, then they are equal on its non-unital subsemiring closure.

theorem NonUnitalRingHom.eq_of_eqOn_stop {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] {f : F} {g : F} (h : Set.EqOn f g ) :
f = g
theorem NonUnitalRingHom.eq_of_eqOn_sdense {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {s : Set R} (hs : NonUnitalSubsemiring.closure s = ) {f : F} {g : F} (h : Set.EqOn (f) (g) s) :
f = g

The image under a ring homomorphism of the subsemiring generated by a set equals the subsemiring generated by the image of the set.

The non-unital ring homomorphism associated to an inclusion of non-unital subsemirings.

Equations

Makes the identity isomorphism from a proof two non-unital subsemirings of a multiplicative monoid are equal.

Equations
def RingEquiv.sofLeftInverse' {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {g : SR} {f : F} (h : Function.LeftInverse g f) :

Restrict a non-unital ring homomorphism with a left inverse to a ring isomorphism to its NonUnitalRingHom.srange.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem RingEquiv.sofLeftInverse'_apply {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {g : SR} {f : F} (h : Function.LeftInverse g f) (x : R) :
@[simp]
theorem RingEquiv.nonUnitalSubsemiringMap_apply_coe {R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R ≃+* S) (s : NonUnitalSubsemiring R) (x : s.toAddSubmonoid) :

Given an equivalence e : R ≃+* S of non-unital semirings and a non-unital subsemiring s of R, non_unital_subsemiring_map e s is the induced equivalence between s and s.map e

Equations
  • One or more equations did not get rendered due to their size.